Quarkonia in small systems

Jana Crkovská^{1,2,3}

¹ on leave from the Institut de Physique Nucléaire d'Orsay, CNRS-IN2P3, Université Paris-Sud, Université Paris-Saclay ²Pôle Emploi ³ about to start at the Los Alamos National Laboratory NM

> Quarkonia as Tools 13-19 January 2019, Aussois

Outline

- Small systems in the Heavy Ion world
- e Remider: quarkonia as probes of QGP
- Nuclear matter effects in p-Pb
- Collectivity in p-Pb
- Quarkonia vs multiplicity in pp and p-Pb

What are small systems?

Traditional HI POV

pp and p-Pb where we do not expect QGP to form.

- "Small" qualifies the size of the colliding system.
- In other words "system a priori too small to show characteristics of heavy ion physics" but which show them nevertheless.

Alternative POV

- "Small" qualifies the size of the created medium.
- On average corresponds to size of the coliding system.
- But individual events may show a different story charged particle multiplicity $N_{\rm ch}.$

Reminder: quarkonia as probes of the QGP I

Original idea from Matsui & Satz: J/ ψ (quarkonia) Debye screened by the free colour charges in QGP. Higher $\sqrt{s_{NN}} \Rightarrow$ warmer plasma \Rightarrow more suppression.

Nuclear modification factor quantifies the nuclear effects on quarkonium production.

Yield in AA scaled by yield in pp multiplied by the nuclear overlap.

 $R_{
m AA} = rac{Y_{
m AA}}{\langle T_{
m AA}
angle \cdot \sigma_{
m pp}}$

Increase in HF production at LHC compared to RHIC

 \Rightarrow possible regeneration of quarkonia form thermalised heavy quarks in the plasma.

Less relevant for bottomonium (b still way less abundant than c).

Reminder: quarkonia as probes of the QGP II

- Non-zero elliptic flow ν_2 measured for prompt (inclusive) J/ψ at the LHC whilst $\nu_2\approx 0$ at RHIC.
- Low-*p*_T: consistent with the regeneration scenario.
- **High-**_{*P*T}: models underestimate the data. Additionnal component from initial magnetic field?

Flow of charm quarks \Rightarrow creation of thermalised medium. Does beauty thermalise too?

azimuthal distribution of charged particles

$$f(p_{\mathrm{T}}, \boldsymbol{\varphi}, \boldsymbol{\eta}) \sim 1 + \sum 2\nu_n \cos\left[n(\boldsymbol{\varphi} - \Psi_n)\right]$$

flow coefficients
$$v_n = \langle \cos[n(\varphi - \Psi_n)] \rangle$$

To study the **cold nuclear matter effects**, we measure J/ψ production in nuclear systems in absence of the QGP - such conditions met in **proton-nucleus collisions**.

To study the **cold nuclear matter effects**, we measure J/ψ production in nuclear systems in absence of the QGP - such conditions met in proton-nucleus collisions.

Nuclear modification of PDFs

• Gluon shadowing/antishadowing: Parton distribution functions are modified by the nuclear environment $\Rightarrow J/\psi$ suppression or enhancement as a function of the parton momentum fraction x in the nucleon.

In $2 \rightarrow 1$ approximation

$$x = \frac{M_{\mathrm{J}/\psi}}{\sqrt{s}} e^{\pm y}.$$

To study the **cold nuclear matter effects**, we measure J/ψ production in nuclear systems in absence of the QGP - such conditions met in **proton-nucleus collisions**.

Nuclear modification of PDFs

• *Gluon shadowing/antishadowing*: Parton distribution functions are modified by the nuclear environment $\Rightarrow J/\psi$ **suppression** or **enhancement** as a function of the parton momentum fraction *x* in the nucleon.

Gluon saturation

• Result of gluon recombination at small *x* at LHC \Rightarrow J/ ψ suppression.

To study the **cold nuclear matter effects**, we measure J/ψ production in nuclear systems in absence of the QGP - such conditions met in **proton-nucleus collisions**.

Nuclear modification of PDFs

• *Gluon shadowing/antishadowing*: Parton distribution functions are modified by the nuclear environment $\Rightarrow J/\psi$ **suppression** or **enhancement** as a function of the parton momentum fraction *x* in the nucleon.

Gluon saturation

• Result of gluon recombination at small *x* at LHC \Rightarrow J/ ψ suppression.

Coherent Energy loss

• The medium induced gluon radiation in initial and/or final state **modifies the** J/ψ yield.

To study the **cold nuclear matter effects**, we measure J/ψ production in nuclear systems in absence of the QGP - such conditions met in **proton-nucleus collisions**.

Nuclear modification of PDFs

• *Gluon shadowing/antishadowing*: Parton distribution functions are modified by the nuclear environment $\Rightarrow J/\psi$ **suppression** or **enhancement** as a function of the parton momentum fraction *x* in the nucleon.

Gluon saturation

• Result of gluon recombination at small *x* at LHC \Rightarrow J/ ψ suppression.

Coherent Energy loss

• The medium induced gluon radiation in initial and/or final state **modifies the** J/ψ yield.

Dissociation with comovers

• Interaction of J/ψ with the comoving matter breaks the bound state $\Rightarrow J/\psi$ suppression.

Nuclear modification of quarkonia in pA

 J/ψ show stronger suppression at forward rapidity while ~ 1 at backward rapidity.

• The pattern is consistent with initial- and final-state effect models.

$$R_{\rm p-Pb} = \frac{\sigma^{pPb}}{A \cdot \sigma^{pp}}$$

Nuclear modification of quarkonia in pA

 J/ψ show stronger suppression at forward rapidity while ~ 1 at backward rapidity.

• The pattern is consistent with initial- and final-state effect models.

 $\psi(2S)$ shows similar suppression in both intervals.

- Cannot be described by only initial state effects.
- Final-state effects give a good description for both states.

$$R_{\rm p-Pb} = \frac{\sigma^{pPb}}{A \cdot \sigma^{pp}}$$

Nuclear modification of quarkonia in pA

 J/ψ show stronger suppression at forward rapidity while ~ 1 at backward rapidity.

• The pattern is consistent with initial- and final-state effect models.

 $\psi(2S)$ shows similar suppression in both intervals.

- Cannot be described by only initial state effects.
- Final-state effects give a good description for both states.

$$R_{\rm p-Pb} = \frac{\sigma^{pPb}}{A \cdot \sigma^{pp}}$$

6/28

Nuclear modification of quarkonia in pA

Higher Υ states also show hints of stronger suppression than $\Upsilon(1S)$ which can be explained by higher break-up rate with comovers.

 J/ψ show stronger suppression at forward rapidity while ~ 1 at backward rapidity.

• The pattern is consistent with initial- and final-state effect models.

 $\psi(2S)$ shows similar suppression in both intervals.

- Cannot be described by only initial state effects.
- Final-state effects give a good description for both states.

With certain assumptions $\!\!\!\!\!\!^*,$ one can estimate the CNM effects in AA as

 $R_{\rm pPb} imes R_{\rm Pbp}$

At low- p_T , $R_{pPb} \times R_{Pbp} < R_{PbPb}$ which could be in hand with the expected contribution from recombination in Pb-Pb.

At higher- p_T , $R_{pPb} \times R_{Pbp} > R_{PbPb}$ favours the scenario when the quarkonia are suppressed due to hot nuclear matter effects.

* the assumptions are:

- shadowing is the dominant CNM effect
- the effect can be factorised on the 2 nuclei
- one neglects the x_{Bjorken} shift between p-Pb and Pb-Pb

High- $p_{\rm T}$ prompt and non-prompt quarkonia give $R_{\rm pA} \sim 1$.

• Similar rapidity coverage as for *R*_{AA}, there is only weak rapidity dependence at midrapidity

High- $p_{\rm T}$ prompt and non-prompt quarkonia give $R_{\rm pA} \sim 1$.

• Similar rapidity coverage as for *R*_{AA}, there is only weak rapidity dependence at midrapidity

High- $p_{\rm T}$ prompt and non-prompt quarkonia give $R_{\rm pA} \sim 1$.

• Similar rapidity coverage as for *R*_{AA}, there is only weak rapidity dependence at midrapidity

J/ψ: ATLAS, EPJC 78 (2018) 762 Υ: ATLAS, EPJC 78 (2018) 171

from QGP.

ALICE, PRL 107 (2011) 032301

Correlations in big and small systems

azimuthal distribution of charged particles

$$f(p_{\mathrm{T}}, \boldsymbol{\varphi}, \boldsymbol{\eta}) \sim 1 + \sum 2v_n \cos[n(\boldsymbol{\varphi} - \Psi_n)]$$

Space anisotropy \Rightarrow momentum anisotropy.

ALICE, PRL 107 (2011) 032301

Correlations in big and small systems

azimuthal distribution of charged particles

$$f(p_{\mathrm{T}}, \boldsymbol{\varphi}, \boldsymbol{\eta}) \sim 1 + \sum 2v_n \cos[n(\boldsymbol{\varphi} - \Psi_n)]$$

Space anisotropy \Rightarrow momentum anisotropy.

Experiment: Difficult to determine symmetry plane

use multi-particle correlations.

PbPb: CMS, JHEP 7 (2011) 76 pPb: CMS, PLBB 718 (2013) 795 pp: CMS, JHEP 09 (2010) 091

Pb-Pb show typical double ridge structure:

PbPb: CMS, JHEP 7 (2011) 76 pPb: CMS, PLBB 718 (2013) 795 pp: CMS, JHEP 09 (2010) 091

Pb-Pb show typical double ridge structure:

PbPb: CMS, JHEP 7 (2011) 76 pPb: CMS, PLBB 718 (2013) 795 pp: CMS, JHEP 09 (2010) 091

Pb-Pb show typical double ridge structure:

PbPb: CMS, JHEP 7 (2011) 76 pPb: CMS, PLBB 718 (2013) 795 pp: CMS, JHEP 09 (2010) 091

Pb-Pb show typical double ridge structure:

Signs of collectivity in high-multiplicity collisions of small systems at the LHC and RHIC

but is it of hydrodynamical origin?

Substract short-range correlations from long-range $\Rightarrow v_2^{sub}$.

${\rm J}/\psi$ elliptic flow in p-Pb

- ALICE: forward J/ ψ correlated with mid- $y h^{\pm}$
- consistent $v_2^{J/\psi, \; sub}$ between 5.02 and 8.16 TeV
- p-Pb results compatible with Pb-Pb $v_2^{J/\psi}$

CMS: flow of prompt ${\rm J}/\psi$ compared with ${\it D}$ and light hadrons

charm develops weaker collectivity than light quarks in small system

Similar underlying mechanism in p-Pb and Pb-Pb?

Charged particle multiplicity studies

The charged particle multiplicity $N_{\rm ch}$ describes the final state and carries information on the production mechanisms.

In a pp event N_{ch} is correlated with the number of parton-parton scatterings aka Multi-Parton Interactions (MPI).

In a p-Pb event N_{ch} is correlated with the number of binary-binary scatterings: MPI, NN interacions, and CNM.

Correlating HF with multiplicity allows us to study the interplay between the hard scattering and the underlying event.

Questions:

- ? Different correlation for charm and beauty?
- ? Auto-correlations between HF and multiplicity estimator (η gap)?
- ? How does the collision energy play in all this? Hardness of the probe?
- ? Possible signs of QGP-like effects in high multiplicity events.

Probing collectivity with multiplicity

Charged hadron $\langle p_{\rm T}\rangle$ behaves differently in pp, p-Pb, and Pb-Pb.

- in pp: increase of $\langle p_{\rm T} \rangle$ with multiplicity favours MPI
- + Pb-Pb: $\langle p_T \rangle$ saturates due to rescattering of the constituents in the medium
- p-Pb: flow at high multiplicity?

What can we see when we take quarkonia instead of charged particles? Some predict suppression of J/ψ in high-multiplicity pp akin to A-A.

Can multiplicity studies help us study collectivity in small systems?

Observables

Relative multiplicity:

Charged particle multiplicity, number of tracks, transverse energy, ...

- Numerator characterises each event.
- Denominator is averaged over the full datasample.

Relative yields:

i defines the multiplicity interval

- Numerator quantifies the number of quarkonia in bin *i*.
- Denominator gives the average number of quarkonia in the datasample.

J/ψ: ALICE, PLB 712 (2012) 165-17 D: ALICE, JHEP 1509 (2015) 148 Υ: CMS, JHEP 04 (2014) 103

ALICE measured J/ ψ and D mesons versus midrapidity $N_{
m ch}$

- Forward $J/\psi \sim$ linear, mid stronger-than-linear increase.
- At midrapidity, open charm, hidden charm and beauty all show quantitatively identical behaviour.

J/ψ: ALICE, PLB 712 (2012) 165-17 D: ALICE, JHEP 1509 (2015) 148 Υ: CMS, JHEP 04 (2014) 103

ALICE measured J/ ψ and D mesons versus midrapidity $N_{
m ch}$

- Forward $J/\psi \sim$ linear, mid stronger-than-linear increase.
- At midrapidity, open charm, hidden charm and beauty all show quantitatively identical behaviour.

J/ψ: ALICE, PLB 712 (2012) 165-17 D: ALICE, JHEP 1509 (2015) 148 Υ: CMS, JHEP 04 (2014) 103

ALICE measured J/ ψ and D mesons versus midrapidity $N_{
m ch}$

- Forward $J/\psi \sim$ linear, mid stronger-than-linear increase.
- At midrapidity, open charm, hidden charm and beauty all show quantitatively identical behaviour.

CMS measured midrapidity Υ versus event activity

- $\Upsilon(1S)$, J/ ψ , and D data without η -gap show the same trend.
- But $\Upsilon(2S)$ and $\Upsilon(3S)$ without η -gap show linear increase.

ALICE measured J/ ψ and D mesons versus midrapidity $N_{\rm ch}$

- Forward $J/\psi \sim$ linear, mid stronger-than-linear increase.
- At midrapidity, open charm, hidden charm and beauty all show quantitatively identical behaviour.

CMS measured midrapidity Y versus event activity

- $\Upsilon(1S)$, J/ ψ , and D data without η -gap show the same trend.
- But $\Upsilon(2S)$ and $\Upsilon(3S)$ without $\eta\text{-gap}$ show linear increase.
- $\Upsilon(1S)$ and J/ψ data with η -gap show the same trend.

T: CMS JHEP 04 (2014) 103

ALICE measured J/ ψ and D mesons versus midrapidity $N_{
m ch}$

- Forward J/ ψ ~ linear, mid stronger-than-linear increase.
- At midrapidity, open charm, hidden charm and beauty all show quantitatively identical behaviour.

CMS measured midrapidity Y versus event activity

- $\Upsilon(1S)$, J/ ψ , and D data without η -gap show the same trend.
- But $\Upsilon(2S)$ and $\Upsilon(3S)$ without $\eta\text{-gap}$ show linear increase.
- $\Upsilon(1S)$ and J/ψ data with η -gap show the same trend.
- ⇒ Independent of hadronisation and energy?
- \Rightarrow Importance of η -gap?
- \Rightarrow Does hardness of the probe play a role?

CMS JHEP 04 (2014) 103

ALICE measured J/ ψ and D mesons versus midrapidity $N_{
m ch}$

- Forward J/ ψ ~ linear, mid stronger-than-linear increase.
- At midrapidity, open charm, hidden charm and beauty all show quantitatively identical behaviour.

CMS measured midrapidity Y versus event activity

- $\Upsilon(1S)$, J/ ψ , and D data without η -gap show the same trend.
- But $\Upsilon(2S)$ and $\Upsilon(3S)$ without $\eta\text{-gap}$ show linear increase.
- $\Upsilon(1S)$ and J/ψ data with η -gap show the same trend.
- ⇒ Independent of hadronisation and energy?
- \Rightarrow Importance of η -gap?
- \Rightarrow Does hardness of the probe play a role?

Large uncertainties and low reach in multiplicity - to confirm these suspissions we need larger statistics and new measurements.

jana.crkovska@cern.ch

Aussois 2019

CMS JHEP 04 (2014) 103

Several new results from ALICE for forward quarkonia versus midrapidity multiplicity.

Reach in multiplicity nearly doubled wrt Run 1 \Rightarrow

- confirmed linear increase for ${\rm J}/\psi$ with $\eta\text{-gap}$
- confirmed stronger-than-linear increase for J/ ψ w/o $\eta\text{-gap}$
- Correlation of yields and multiplicity does not depend on hadronisation process - instead related to $Q\bar{Q}$ production.

Rapidity gap is important - possible autocorrelations between HF and UE.

Multiplicity dependence of J/ψ in models

EPOS3: Phys. Rept. 350 (2001) 93–289 PYTHIA8: Comput.Phys.Commun. 191 (2015) 159-177 Ferreiro: PRC 86 (2012) 034903 Kopeliovich: PRD 88 (11) (2013) 116002

- data compared with available models different MPI implementation
 - EPOS3 MPI via Pomeron exchange + hydrodynamic expansion
 - PYTHIA8 several processes: MPI, hard scattering,
 - Kopeliovich higher Fock states in the protons leading to higher gluon densities in collision
 - Ferreiro percolation of colour strings resulting in stronger suppression of soft processes $(N_{\rm ch})$ than of hard processes $(N_{\rm J/\psi})$
- consistent within uncertainties with all models

Multiplicity dependence of quarkonia versus energy

J/ψ 7TeV: ALICE, PLB 712 (2012) 165-175 D 7 TeV: ALICE, JHEP 1509 (2015) 148 J/ψ 200 GeV: STAR, arXiv:1805.03745

13 TeV

5.02 TeV

• LHC data show the same trends at all energies.

Multiplicity dependence of quarkonia versus energy

J/ψ 7TeV: ALICE, PLB 712 (2012) 165-175 D 7 TeV: ALICE, JHEP 1509 (2015) 148 J/ψ 200 GeV: STAR, arXiv:1805.03745

Multiplicity dependence of quarkonia versus energy

J/w 7TeV: ALICE, PLB 712 (2012) 165-175 D 7 TeV: ALICE, JHEP 1509 (2015) 148 1/w 200 GeV: STAB, arXiv:1805.03745

3/01/2019 19/28

Suppression of higher bottomonia states in small systems

2.76TeV: CMS, JHEP 04 (2014) 103 7TeV: CMS-PAS-BPH-14-009

- In pp 2.76 TeV midrapidity $\Upsilon(2S)$ and $\Upsilon(3S)$ seam to be more suppressed with increasing midrapidity multiplicity.
- The data show weak dependence observed when \Upsilon correlated with forward multiplicity.

Suppression of higher bottomonia states in small systems

- In pp 2.76 TeV midrapidity $\Upsilon(2S)$ and $\Upsilon(3S)$ seam to be more suppressed with increasing midrapidity multiplicity.
- \bullet The data show weak dependence observed when Υ correlated with forward multiplicity.
- Higher statistics in pp 7 TeV preliminary CMS results suggest suppression is there in pp independent of the η-gap.

2.76TeV: CMS, JHEP 04 (2014) 103 7TeV: CMS-PAS-BPH-14-009

Suppression of higher bottomonia states in small systems (cont.)

- Preliminary CMS results suggest stronger multiplicity-dependent suppression of $\Upsilon(2S)$ and $\Upsilon(3S)$ w. r. t. $\Upsilon(1S)$.
- ALICE measured ratio of **relative** $\Upsilon(1S)$ and $\Upsilon(2S)$ at forward versus midrapidity $N_{ch} \rightarrow$ double ratio is flat in multiplicity.

Multiplicity dependence of quarkonia versus probe's mass

We saw hints of the same increase for J/ψ and Υ but no direct comparison (different axes, rapidity ranges etc.).
Ratio of J/ψ and Υ(1S) at forward versus midrapidity N_{ch} → double ratio is flat in multiplicity.

Multiplicity dependence of quarkonia versus p_T

ALI-PREL-132858

Data for midrapidity J/ψ versus midrapidity N_{ch} were split into 4 bins

- Hints of dependence on probe's p_T reported by ALIE and STAR are supported by PYTHIA.
- But yields in all bins are consistent within uncertainty!

Multiplicity dependence of quarkonia versus p_T

Data for midrapidity J/ψ versus midrapidity N_{ch} were split into 4 bins

- $\bullet\,$ Hints of dependence on probe's $p_{\rm T}$ reported by ALIE and STAR are supported by PYTHIA.
- But yields in all bins are consistent within uncertainty!
- Similar conclusion to the latter was drawn from average *D* mesons.

jana.crkovska@cern.ch

Multiplicity dependence of quarkonia versus p_T

So far no conclusive answer on hardness dependence. Data for midrapidity J/ψ versus midrapidity N_{ch} were split into 4 bins

- Hints of dependence on probe's $\ensuremath{\mathit{p_T}}$ reported by ALIE and STAR are supported by PYTHIA.
- But yields in all bins are consistent within uncertainty!
- Similar conclusion to the latter was drawn from average *D* mesons.

jana.crkovska@cern.ch

Charm versus multiplicity in p-Pb

Inclusive J/ψ versus midrapidity N_{ch} from ALICE:

- Backward J/ψ consistent with linear increase.
- $\bullet\,$ From $\sim 2\times$ the average multiplicity, forward yields are suppressed.

Charm versus multiplicity in p-Pb

Inclusive J/ψ versus midrapidity N_{ch} from ALICE:

- Backward J/ψ consistent with linear increase.
- \bullet From $\sim 2\times$ the average multiplicity, forward yields are suppressed.
- Consistent with CNM scenario suppression at forward rapidity increases with multiplicity.

Charm versus multiplicity in p-Pb

Inclusive J/ψ versus midrapidity N_{ch} from ALICE:

- Backward J/ψ consistent with linear increase.
- \bullet From $\sim 2\times$ the average multiplicity, forward yields are suppressed.

Consistent with CNM scenario - suppression at forward rapidity increases with multiplicity.

• The same behaviour at 8 and 5 TeV in both rapidity intervals.

Also in p-Pb, relative quantities remove energy dependence.

Charm versus multiplicity in p-Pb (cont.)

Midrapidity D mesons:

- The increase dependends on whether we take multiplicity at mid- or at forward *y*.
- One possible explanation could be hydro.

1.5

ALICE p-Pb $\sqrt{s_{MN}} = 5.02 \text{ TeV}$

4.5

Midrapidity D mesons:

dN/dy / {dN/dy}

9

6

0

'n

0.5

- The increase dependends on whether we take multiplicity at mid- or at forward v.
- One possible explanation could be hydro.

Inclusive J/ ψ , $p_{T} > 0$ GeV/c, -1.37 < $y_{cms} < 0.43$ Prompt D, p_ ∈ [2,4] GeV/c, -0.96 < y < 0.04 common normalisation uncert of 3.1 % and B feed-down unc. not shown

3

3.5

 $dN_{ch}/d\eta / \langle dN_{ch}/d\eta \rangle$

2.5

2

May we expect some signs of collectivity?

D: ALICE . IHEP 8 (2016) 1 1/w: ALICE, PLB 776 (2018) 91

CMS, JHEP 04 (2014) 103 ATLAS: EPJC 78 (2018) 17

Beauty vs multiplicity in p-Pb

• Bottomonia all show linear increase with multiplicity with and without η -gap - but lower reach in multiplicity!

Beauty vs multiplicity in p-Pb

• Bottomonia all show linear increase with multiplicity with and without η -gap - but lower reach in multiplicity!

• Same behaviour for hidden charm, open and hidden beauty.

Beauty vs multiplicity in p-Pb

Bottomonia all show linear increase with multiplicity with and without η-gap - but lower reach in multiplicity!

• Same behaviour for hidden charm, open and hidden beauty.

Suggest that increase is independent of hadronisation. Concerning multiplicity estimator dependence, need to measure higher multiplicities.

nuclear modification in p-Pb

- Different suppression for higher quarkonia states that suggest different final-state effects.
- At low-*p*_T, difficult extrapolation of CNM effects from p-Pb into Pb-Pb. Expect non-negligible CNM effects in Pb-Pb at the LHC.
- High-*p*_T data suggest that there is little contribution of CNM into suppression in Pb-Pb.

nuclear modification in p-Pb

- Different suppression for higher quarkonia states that suggest different final-state effects.
- At low-*p*_T, difficult extrapolation of CNM effects from p-Pb into Pb-Pb. Expect non-negligible CNM effects in Pb-Pb at the LHC.
- High- p_T data suggest that there is little contribution of CNM into suppression in Pb-Pb.

collectivity in small systems

- Long-range multi-particle correlations in LHC high-multiplicity pp and p-Pb events show collectivity. Yet to decide whether it is or not of hydro origin?
- Charmed particle flow but develop weaker collectivity than light hadrons.
- Possibly the same underlying mechanism in p-Pb and Pb-Pb?

quarkonia versus multiplicity

- Correlating relative quantities removes energy dependence in pp and p-Pb.
- Nature of increase independent of hadronisation or mass of the probe.
- (Non-)Existence of η -gap between the probe and UE affects the correlation.
- There are hints of $p_{\rm T}$ dependence, however not conclusive.
- Some model comparison of open HF in p-Pb suggest hydrodynamical behaviour ⇒ motivation to check the same with charmonia or even beauty.
- CMS measured relative suppression of higher Υ states as is observed in p-Pb \Rightarrow motivation to check if the same will hold for $\psi(2S)$?