Measurement of the phase space density increase of a muon beam through ionization cooling

François Drielsma

University of Geneva

August 5, 2018



### Run settings under consideration

Preliminary dissertation uploaded at indico.cern.ch/event/739039 Three main cooling settings, will **only present 2017/02-7 here** 

|                     | 2016/04-1.2       | 2016/05-1         | 2017/02-2         |
|---------------------|-------------------|-------------------|-------------------|
| Mode                | Solenoid          | Flip              | Flip              |
| Momentum [MeV/c]    | 140               | 140               | 140               |
| Emittances [mm]     | 3, 6, 10          | 3, 6, 10          | 3, 6, 10          |
| $\beta_{\perp}^{*}$ | $\sim 800{ m mm}$ | $\sim 550{ m mm}$ | $\sim 520{ m mm}$ |



#### Simulations

Using the MAUS 3.2.0 simulations (latest, thanks DR, DM and PF)

- $\sim 100$ k particles per setting, D2 tuned up to match observed;
- High ρ glue in trackers, matched within the tracker reconstruction;
- Fields scaled up by 1.8% in SSU and 1.55% in SSD to match the hall probe measurements;
- $\circ\,$  Hall probe readings stable at the  $10^{-4}$  level between runs.



#### Tracker $p_T$ hole issue

The trackers are highly efficient. If a muon goes through their fiducial volume, they almost certainty record a track (*bottom left*).

At low  $p_T$ , however, the  $p_z$  resolution is extremely poor (bottom right)

- $\rightarrow\,$  If one applies a momentum cut to preserve monochromaticity, one will inevitably loose more low  $p_T$  tracks;
- $\rightarrow\,$  It creates a **hole** at the centre of the phase space which hinders any hope of recovering an unbiased phase space density.



## Tracker $p_T$ hole fix

The low  $p_z$  resolution is a **inherent limitation** of the tracker technology. If the radius is too small, the uncertainty diverges.

The **ToF** of  $\sim 140 \,\mathrm{MeV}/c$  particles offers an exquisite estimate of p:

- ightarrow Use it to recover the phase space of low  $p_T$  tracks;
- $\rightarrow\,$  Only real uncertainty is energy straggling, worse for large  $\epsilon_{\perp}$  beams;
- $\rightarrow\,$  Use the weighted momentum estimate, scale accordingly.

For the downstream section, use the TKU best estimate and propagate it downstream. Once again, use the weighted average.



### Comparison of the 6 mm beam, TKU S1 (!)

Before fix After fix Data Data MICE Preliminary MICE Preliminary 0.07 Entries 100000 Entries 126644 ISIS Cycle 2017/03 0.06 ISIS Cycle 2017/03 Mean 0.50 ± 0.06 Mean -1.74 ± 0.06 0.06 Run setting 7 Run setting 7 - Data - Data 0.05 MAUS v3.2.0 MAUS v3.1.2 0.05 0.04 0.04  $p_x$ 0.03 0.03 0.02 0.02 0.0 0.01 p [MeV/c] p, [MeV/c] Data Data Entries 100000 Entries 126644 ISIS Cycle 2017/03 ISIS Cycle 2017/03 Mean 4.49 ± 0.06 Mean -0.52 ± 0.06 0.07 Run setting 7 0.06 Run setting 7 - Data --- Data 0.06E MAUS v3.1.2 MAUS v3 2 0 0.05 0.05 0.04  $p_y$ 0.04 0.03 0.03 0.02 0.02 0.01F 0.0 -900 -900 80 100 p. [MeV/c] -80 -60 -40-2040 60 80 100 p. [MeV/c] -4060

François Drielsma (UniGe)

# Sample selection

Series of selection criteria applied to the data and the simulation:

- 1 SP in TOF0
- 1 SP in TOF1
- $\circ$  ToF01 compatible with  $\mu$
- 1 tracker track (TKU+TKD)
- $\chi^2/\text{ndf} < 10 \text{ (TKU+TKD)}$
- Fiducial radius < 150 mm (TKU+TKD)
- TKU total momentum  $\in [135, 145] \,\mathrm{MeV}/c$
- $\circ$  Energy loss between TOF1 and TKU compatible with  $\mu$  and true diffuser thickness



# 2017/02-7 data samples

Each number in the table below represents the amount of tracks that pass the row's cut and that cut alone. **All the data available is included**.

| Cuts                     | No absorber |         | LiH absorber |        |        |         |
|--------------------------|-------------|---------|--------------|--------|--------|---------|
| Input $\epsilon_{\perp}$ | 3 mm        | 6 mm    | 10 mm        | 3 mm   | 6 mm   | 10 mm   |
| None                     | 719334      | 1458158 | 1212980      | 677811 | 857507 | 1024734 |
| TOF0 SP                  | 613401      | 1216732 | 963969       | 569998 | 708432 | 802106  |
| TOF1 SP                  | 687660      | 1396488 | 1126896      | 646037 | 820382 | 946978  |
| Time-of-flight           | 293958      | 563262  | 429728       | 272118 | 327895 | 355393  |
| TKU track                | 271421      | 969672  | 623020       | 257795 | 576315 | 529450  |
| TKU $\chi^2/ndf$         | 252299      | 891481  | 574656       | 239333 | 527072 | 487189  |
| TKU fiducial             | 268867      | 962979  | 595927       | 255364 | 572451 | 506443  |
| TKU Momentum             | 81103       | 288399  | 132168       | 76067  | 168826 | 111180  |
| Energy loss              | 119744      | 463164  | 266932       | 111700 | 269547 | 219638  |
| All US                   | 54884       | 219146  | 87197        | 50602  | 126644 | 71213   |
| TKD track                | 53656       | 204415  | 60326        | 49056  | 118088 | 48193   |
| TKD $\chi^2/ndf$         | 52760       | 201679  | 59464        | 48361  | 116683 | 47676   |
| TKD fiducial             | 53227       | 195329  | 51847        | 47928  | 114054 | 42774   |
| All DS                   | 52368       | 192864  | 51203        | 47271  | 112777 | 42375   |

# 2017/02-7 upstream profiles



François Drielsma (UniGe)

Transverse phase-space evolution

# 2017/02-7 downstream profiles



François Drielsma (UniGe)

Transverse phase-space evolution

# **Optical functions**



#### Transverse normalised RMS emittance

Transverse normalised RMS emittance defined as  $\epsilon_{\perp} = \frac{1}{m} |\Sigma_{\perp}|^{\frac{1}{4}}$ , with  $|\Sigma_{\perp}|$  the determinant of the covariance matrix defined as

The RMS emittance is directly related to the volume of the RMS ellipsoid through  $\epsilon_{\perp} = \sqrt{2V_{\text{RMS}}}/(m\pi)$  and as such is the most common probe of average phase-space density.

 $\rightarrow\,$  Poor estimate in the case of low transmission or non-linear transport



Transmission and emittance evolution in the 10 mm beam, with LiH

#### Transverse single-particle amplitude

Single particle amplitude is defined as

$$A_{\perp} = \epsilon_{\perp} \mathbf{u}^T \mathbf{\Sigma}_{\perp}^{-1} \mathbf{u}, \qquad (1$$

with  $\mathbf{u} = \mathbf{v} - \boldsymbol{\mu}$ , the centered phase-space vector of the particle.

It is related to the **volume** of an ellipse similar to the RMS ellipse, going through **v**. High amplitudes **iteratively removed** from ensemble to prevent bias



Particle amplitude provides an density estimate in every sample point

$$\rho(\boldsymbol{v}_i) = \rho_{\max} \exp\left[-\mathbf{u}^T \boldsymbol{\Sigma}_{\perp}^{-1} \mathbf{u}/2\right] = \left|\rho_{\max} \exp\left[-\frac{A_{\perp}}{2\epsilon_{\perp}}\right]\right|.$$
 (2)

 $\rightarrow$  Allows for the selection of a high density core !

# Poincaré sections upstream (6 mm, LiH)



François Drielsma (UniGe)

Transverse phase-space evolution

August 5, 2018 14 / 33

## Poincaré sections downstream (6 mm, LiH)



François Drielsma (UniGe)

Transverse phase-space evolution

August 5, 2018 15 / 33

#### Amplitude distributions in data



#### **CDF** ratios



# Summary statistics

Several summary statistics studied and viable, as summarized in here:

|                 | $A_{\alpha}$                         | $e_{lpha}$                                         | $\epsilon_{lpha}$                                       |
|-----------------|--------------------------------------|----------------------------------------------------|---------------------------------------------------------|
| Name            | lpha-amplitude                       | lpha-subemittance                                  | lpha-emittance                                          |
| Value           | $\epsilon_{\perp}\chi_4^2(lpha)$     | $\epsilon_{\perp} P(3, \chi_4^2(\alpha)/2)/\alpha$ | $\frac{1}{2}m^2\pi^2\epsilon_{\perp}^2\chi_4^2(\alpha)$ |
| $\alpha = 9 \%$ | $\epsilon_{\perp}$                   | $\sim 0.16 \epsilon_{\perp}$                       | $V_{RMS}$                                               |
| $\sigma_x/x$    | $g(\alpha)\sqrt{\alpha(1-\alpha)/n}$ | $1/\sqrt{2\alpha n}$                               | $2g(\alpha)\sqrt{\alpha(1-\alpha)/n}$                   |
| $\alpha = 9\%$  | $\sim 1.9/\sqrt{n}$                  | $\sim 2.4/\sqrt{n}$                                | $\sim 3.8/\sqrt{n}$                                     |
| $\Delta x/x$    | δ                                    | δ                                                  | $(\delta+1)^2-1$                                        |

- P(n,x) the regularized Gamma function;
- $g(\alpha)$  a complicated function of  $\alpha$  (see dissertation);
- $\circ~\delta$  is the relative normalised emittance change.

A fraction of  $\alpha = 9$  % is chosen as it represents the RMS ellipse in 4D.

# Fractional emittance evolution (6 mm, LiH)





## Non-parametric density estimation

Amplitude methods work well for beams with a **Gaussian core**, so they are restricted to a small fraction of a non-linear beam (statistical limitation)

Three classes of estimators considered for this measurement

|                     | Histograms                                | k-Nearest Neighbour              | PBATDE                              |
|---------------------|-------------------------------------------|----------------------------------|-------------------------------------|
| $ ho(oldsymbol{x})$ | $n_i(oldsymbol{x})/(n\Delta_i)$           | $k/(n\kappa_d R_k^d)$            | $\frac{1}{M}\sum_{i=1}^{M}v_i^{-1}$ |
| MISE                | $\mathcal{O}(\Delta^{2/d} + 1/(n\Delta))$ | $\mathcal{O}((k/n)^{4/d} + 1/k)$ | $\mathcal{O}(J^{-4/d} + J/n)$       |
| d = 4               | $\mathcal{O}(\Delta^{1/2} + 1/(n\Delta))$ | $\mathcal{O}(k/n+1/k)$           | $\mathcal{O}(1/J + J/n)$            |
| Convergence         | $n^{-2/(2+d)}$                            | $n^{-4/(4+d)}$                   | $n^{-4/(4+d)}$                      |
| d = 4               | $n^{-1/3}$                                | $n^{-1/2}$                       | $n^{-1/2}$                          |
| Speed               | Fast                                      | Fast                             | Slow                                |

*k*-Nearest Neighbour (kNN) estimator has highest rate of convergence (on par with the PBATDE) and is the least computationally intensive.

Systematic studies on a broad array of distribution classes showed robustness of the kNN algorithm (see dissertation).

François Drielsma (UniGe)

Transverse phase-space evolution

## k-Nearest Neighbor

To find the density at a point x in phase space, find the k closest data points, with the distance defined as

$$D_i^2 = (x - x_i)^T (x - x_i),$$
 (3)

the Euclidean distance.

If  $R_k$  is the distance to the  $k^{th}$  point, the 4D density then reads

$$\rho(\boldsymbol{x}) = \frac{k}{n} \frac{1}{\kappa_4 R_k^4}, \qquad (4)$$

with  $\kappa_4 = \pi^2/2$ , the volume of the Euclidean unit 4-ball.

The optimal k in 4D follows  $k \sim \sqrt{n}$ .





# Poincaré sections upstream (6 mm, LiH)



François Drielsma (UniGe)

Transverse phase-space evolution

August 5, 2018 22 / 33

## Poincaré sections downstream (6 mm, LiH)



François Drielsma (UniGe)

I ransverse phase-space evolution

August 5, 2018 23 / 33

#### Contour levels

<u>Goal</u>: Need an equivalent to  $A_{\perp}$ , to represent at which density the points lie upstream and downstream of the absorber in a 1D plot.

<u>Challenge</u>: The probability density function is unknown; the concept of radius is meaningless. Must find a different quantity to  $A_{\perp}$ .

<u>Solution</u>: **Contour levels**. For a core fraction of the beam  $\alpha$ , find the level of the corresponding contour. If the level has raised at a given  $\alpha$ , the density of particles has increased. With  $F^{-1}$  the inverse CDF,

$$\rho_{\alpha} = \rho(F^{-1}(\alpha)). \tag{5}$$



## Density profiles in data



#### Density summary statistics

As a summary statistic, one can represent the evolution of an arbitrary contour level: 9% as it corresponds to the RMS ellipse contour,  $\rho_9$ .

If the beam core is Gaussian, the relative change in density corresponds to

$$\frac{\rho_{\alpha}^{d} - \rho_{\alpha}^{u}}{\rho_{\alpha}^{u}} = \frac{1}{(\delta+1)^{2}} - 1 \simeq -2\delta$$
(6)

with  $\delta$  the relative RMS emittance change. If the emittance decreases by  $\delta$ , the density approximatively increases twice as much.

An alternative is to compute the volume of phase space that contains the particles above  $\rho_9$ ,  $V_9$ . This yields the generalised fractional emittance. If the beam core is Gaussian, the relative change in density corresponds to

$$\frac{V_{\alpha}^d - V_{\alpha}^u}{V_{\alpha}^u} = (\delta + 1)^2 - 1 \simeq 2\delta,\tag{7}$$

i.e. twice the emittance change, same as before.

# Density evolution (6mm, LiH)

#### Change (data): +10.80 $\pm$ 1.20 (stat) $\pm$ 0.68 (syst) %



# Contour volume evolution (6mm, LiH)



# Conclusions

#### Amplitude-based analysis:

- Selecting the core amplitude-wise **gets rid of artificial cooling** due to scraping and **artificial growth** due to non-linearities
- Systematics study complete
- Method shows a **clear cooling signal** in data, agrees with MC.

#### Nonparametric density estimation analysis:

- Thorough studies finished, *k*NN most convergent, robust and fast in 4D. Allows for the reconstruction of the probability density function in phase space upstream and downstream of absorber.
- Systematics study complete
- Method shows a **clear cooling signal** in data, agrees with MC.

Could show all or a subset of the plots presented here at NuFact.

Find more details at indico.cern.ch/event/739039

### **Systematics**

Same systematics sources as CR:

- +1 mm position
- $\circ$  +1 mrad rotation
- $\circ$  +1 % CC current
- $\circ~+5\,\%~E1/E2$  current
- $\circ$  +25 % glue density

For each source,  $10^6$  muons resampled from the measured distribution. Same cuts applied to the so-produced simulation.

Each quantity represented is computed in each case and a systematic study of the uncertainty is produced.

Next slides show the effect on the amplitude distributions, the fractional emittance and the density estimation for 2017/02-7.

#### Amplitude distribution systematics



#### 9% fractional emittance systematics



#### Density levels systematics

