Multi-photons signatures at the LHC

Abdesslam Arhrib

Faculté des Sciences et Techniques Tangier, Morocco

Based on: A, Benbrik, Moretti, Rouchad, Q.S. Yan and X. Zhang, JHEP'18

and work in progress with R. Benbrik, J. ElFalaki, M. Sampaio and R. Santos

H2020 meeting , Lisboa 3th September 2018

- Introduction: Higgs at LHC
- The Two Higgs Doublet Model (2HDM)
- Implications for 2HDM
- Multi-photons signature at 2HDM-I: i) quasi-Fermiophobic light Higgs in the 2HDM-I ii) $pp \rightarrow H_{125} \rightarrow hh \rightarrow 4\gamma$
- Search for $A^0 \rightarrow \gamma \gamma, ZZ, WW$ in the 2HDM, 2HDM+VLQ
- Conclusions

A B > A B >

Higgs at LHC; Circulez ... rien à voir...

Plot of the fit to the production mode (left) and decay mode (right) signal strength μ_i .

< 17 ▶

Higgs at LHC

Observed contours at 68% and 95% CL

Observed contours at 68% and 95% CL

문 문 문

What do we learn from Higgs discovery?

- 1. The Higgs mechanism is operating: from $\Phi \Phi VV$ we get HVV.
- 2. Observation of bosonic decays: $H \rightarrow \gamma \gamma, ZZ, WW$ Observation of Yuhawa interactions: $H \rightarrow \tau^+ \tau^-, t\overline{t}$ and $b\overline{b}$

Still missing $H\to \gamma Z, \mu^+\mu^-$ and triple and quartic couplings hhh, hhhh

What do we learn from Higgs discovery?

- 1. The Higgs mechanism is operating: from $\Phi \Phi VV$ we get HVV.
- 2. Observation of bosonic decays: $H \rightarrow \gamma \gamma, ZZ, WW$ Observation of Yuhawa interactions: $H \rightarrow \tau^+ \tau^-, t\overline{t}$ and $b\overline{b}$

Still missing $H\to \gamma Z, \mu^+\mu^-$ and triple and quartic couplings hhh, hhhh

3. The Higgs vev is full strength, *HWW*, *HZZ* are SM-like (BUT; data has large errors and it may be possible the vev strength is shared by other Higgs like in Multi-Higgs models, SUSY). More data are needed.

A B > A B >

Future LHC-HL/ FCC / ILC

The mission of the future LHC run is:

- Accurate measurements of the scalar boson couplings to SM particles would help to determine if the Higgs-like particle is the SM Higgs or a Higgs that belongs to a higher representations: more doublets, doublet & triplets, doublet & singlets
- Find a clear hint of new physics beyond SM

Future LHC-HL/ FCC / ILC

The mission of the future LHC run is:

- Accurate measurements of the scalar boson couplings to SM particles would help to determine if the Higgs-like particle is the SM Higgs or a Higgs that belongs to a higher representations: more doublets, doublet & triplets, doublet & singlets
- Find a clear hint of new physics beyond SM

LHC & ILC complementarity; M. Peskin, hep-ph/1207.2516

$$\Phi_1 = \begin{pmatrix} \phi_1^+ \\ \frac{1}{\sqrt{2}} (v_1 + \phi_1^0 + ia_1) \end{pmatrix}; \quad \Phi_2 = \begin{pmatrix} \phi_2^+ \\ \frac{1}{\sqrt{2}} (v_2 + \phi_2^0 + ia_2) \end{pmatrix}.$$

The most general potential for 2HDM:

$$\begin{split} V(\Phi_1, \Phi_2) &= m_1^2 \Phi_1^{\dagger} \Phi_1 + m_2^2 \Phi_2^{\dagger} \Phi_2 + (m_{12}^2 \Phi_1^{\dagger} \Phi_2 + \text{h.c}) \\ &+ \frac{1}{2} \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \frac{1}{2} \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 \\ &+ \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) \\ &+ \frac{1}{2} [\lambda_5 (\Phi_1^{\dagger} \Phi_2)^2 + (\lambda_6 \Phi_1^{\dagger} \Phi_1 + \lambda_7 \Phi_2^{\dagger} \Phi_2) \Phi_1^{\dagger} \Phi_2 + \text{h.c.}], \end{split}$$

(E)

$$\Phi_{1} = \begin{pmatrix} \phi_{1}^{+} \\ \frac{1}{\sqrt{2}} (v_{1} + \phi_{1}^{0} + ia_{1}) \end{pmatrix}; \quad \Phi_{2} = \begin{pmatrix} \phi_{2}^{+} \\ \frac{1}{\sqrt{2}} (v_{2} + \phi_{2}^{0} + ia_{2}) \end{pmatrix}$$

٠

The most general potential for 2HDM:

$$\begin{split} V(\Phi_1, \Phi_2) &= m_1^2 \Phi_1^{\dagger} \Phi_1 + m_2^2 \Phi_2^{\dagger} \Phi_2 + (m_{12}^2 \Phi_1^{\dagger} \Phi_2 + \text{h.c}) \\ &+ \frac{1}{2} \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \frac{1}{2} \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 \\ &+ \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) \\ &+ \frac{1}{2} [\lambda_5 (\Phi_1^{\dagger} \Phi_2)^2 + (\lambda_6 \Phi_1^{\dagger} \Phi_1 + \lambda_7 \Phi_2^{\dagger} \Phi_2) \Phi_1^{\dagger} \Phi_2 + \text{h.c.}], \end{split}$$

•
$$\mathbb{Z}_2$$
: $\Phi_i \to -\Phi_i \Leftrightarrow \lambda_{6,7} = 0$

• No explicit CP violation: $Im(m_{12}^2\lambda_{5,6,7}) = 0$

2HDM

$$\Phi_{1} = \begin{pmatrix} \phi_{1}^{+} \\ \frac{1}{\sqrt{2}} (v_{1} + \phi_{1}^{0} + ia_{1}) \end{pmatrix}; \quad \Phi_{2} = \begin{pmatrix} \phi_{2}^{+} \\ \frac{1}{\sqrt{2}} (v_{2} + \phi_{2}^{0} + ia_{2}) \end{pmatrix}.$$
$$-\mathcal{L}_{Y} = \sum_{a=1,2} \left[\bar{Q}_{L} Y_{d}^{a} \Phi_{a} d_{R} + \bar{Q}_{L} Y_{u}^{a} \tilde{\Phi}_{a} u_{R} + \bar{L}_{L} Y_{\ell}^{a} \Phi_{a} \ell_{R} + \text{h.c.} \right],$$

leads to FCNCs at tree level.

æ

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

2HDM

$$\Phi_{1} = \begin{pmatrix} \phi_{1}^{+} \\ \frac{1}{\sqrt{2}} (v_{1} + \phi_{1}^{0} + ia_{1}) \end{pmatrix}; \quad \Phi_{2} = \begin{pmatrix} \phi_{2}^{+} \\ \frac{1}{\sqrt{2}} (v_{2} + \phi_{2}^{0} + ia_{2}) \end{pmatrix}.$$

$$-\mathcal{L}_{Y} = \sum_{a=1,2} \left[\bar{Q}_{L} Y_{d}^{a} \Phi_{a} d_{R} + \bar{Q}_{L} Y_{u}^{a} \tilde{\Phi}_{a} u_{R} + \bar{L}_{L} Y_{\ell}^{a} \Phi_{a} \ell_{R} + \text{h.c.} \right] ,$$

leads to FCNCs at tree level.

• Classification of 2HDMs satisfying the Glashow-Weinberg condition which guarantees the absence of tree-level FCNC.

Type-I	$Y^1_{u,d} = 0, Y^1_{\ell} = 0$
Type-II	$Y^1_u = Y^2_{d,\ell} = 0$
Type-III (X)	$Y^1_{u,d}=Y^2_\ell=0$
Type-IV (Y)	$Y^1_{u,\ell}=Y^2_d=0$

CP conserving 2HDM: CP-even h, H, CP-odd A and H^{\pm}

The Yukawa Lagrangian:

$$-\mathcal{L}_{Yuk} = \sum_{\psi=u,d,l} \left(\frac{m_{\psi}}{v} \kappa_{\psi}^{h} \bar{\psi} \psi h^{0} + \frac{m_{\psi}}{v} \kappa_{\psi}^{H} \bar{\psi} \psi H^{0} - i \frac{m_{\psi}}{v} \kappa_{\psi}^{A} \bar{\psi} \gamma_{5} \psi A^{0} \right) + \left(\frac{V_{ud}}{\sqrt{2}v} \bar{u} (m_{u} \kappa_{u}^{A} P_{L} + m_{d} \kappa_{d}^{A} P_{R}) dH^{+} + \frac{m_{l} \kappa_{l}^{A}}{\sqrt{2}v} \bar{\nu}_{L} I_{R} H^{+} + H.c. \right)$$

	κ^h_u	κ^h_d	κ_l^h	κ_u^A	κ_d^A	κ_l^A
Type-I	c_{lpha}/s_{eta}	c_lpha/s_eta	c_lpha/s_eta	$\cot \beta$	$-\coteta$	$-\cot\beta$
Type-II	c_{lpha}/s_{eta}	$-s_{lpha}/c_{eta}$	$-s_{lpha}/c_{eta}$	$\cot \beta$	aneta	aneta
Type-III	c_{lpha}/s_{eta}	c_{lpha}/s_{eta}	$-s_{lpha}/c_{eta}$	$\cot \beta$	$-\cot\beta$	aneta
Type-IV	c_{lpha}/s_{eta}	$-s_{lpha}/c_{eta}$	c_lpha/s_eta	$\cot\beta$	aneta	$-\cot\beta$

< ≣ > <

• Couplings:

$$\begin{split} hVV \propto \sin_{\beta-\alpha} &, \quad HVV \propto \cos_{\beta-\alpha} &, \quad AVV = 0 \\ hH^{\pm}W^{\mp} \propto \cos_{\beta-\alpha} &, \quad HH^{\pm}W^{\mp} \propto \sin_{\beta-\alpha} &, \quad AH^{\pm}W^{\mp} \propto \frac{g}{2} \\ H^{\pm}W^{\mp}\gamma = 0 \ (e.m \ inv) &, \quad H^{\pm}W^{\mp}Z = 0 \ \ but \ \ loop \ mediated \end{split}$$

- 2 alignment limits:
 - h=125 GeV SM-like: $\sin_{\beta-\alpha} = 1$ (Decoupling limit)
 - h < H=125 GeV SM-like: $\cos_{\beta-\alpha} = 1$:

Status of the 2HDM, h^0 SM-like Higgs

Status of the 2HDM: h^0 SM-like Higgs

Abdesslam Arhrib Multi-photons signatures at the LHC

Alignment limit: H⁰-SM like

In the alignment limit $\cos(\beta - \alpha) \approx 1$, the heavy CP-even Higgs H^0 mimics the SM Higgs: $H^0 f \bar{f} = \frac{\sin \alpha}{\sin \beta} \approx 1$, $H^0 V V = \cos(\beta - \alpha) \approx 1$

A B > A B >

Alignment limit: H^0 -SM like

In the alignment limit $\cos(\beta - \alpha) \approx 1$, the heavy CP-even Higgs H^0 mimics the SM_nHiggs:

 H^0 mimics the SM Higgs: $H^0 f \bar{f} = \frac{\sin \alpha}{\sin \beta} \approx 1$, $H^0 V V = \cos(\beta - \alpha) \approx 1$

- $m_h \leq m_H = 125 \text{ GeV}$: $H^0 \rightarrow h^0 h^0 \text{ and/or } H^0 \rightarrow A^0 A^0 \text{ might}$ be open: $Br(H^0 \rightarrow h^0 h^0) + Br(H^0 \rightarrow A^0 A^0) \leq 20 - 30\%$
- For $m_h \leq 125$ GeV and $m_H = 125$ GeV: EWPT imply that H^{\pm} and A^0 would be also light.

Alignment limit: H^0 -SM like

In the alignment limit $\cos(\beta - \alpha) \approx 1$, the heavy CP-even Higgs H^0 mimics the SM_nHiggs:

 H^0 mimics the SM Higgs: $H^0 f \bar{f} = \frac{\sin \alpha}{\sin \beta} \approx 1$, $H^0 V V = \cos(\beta - \alpha) \approx 1$

- $m_h \leq m_H = 125 \text{ GeV}$: $H^0 \rightarrow h^0 h^0 \text{ and/or } H^0 \rightarrow A^0 A^0 \text{ might}$ be open: $Br(H^0 \rightarrow h^0 h^0) + Br(H^0 \rightarrow A^0 A^0) \leq 20 - 30\%$
- For $m_h \leq 125$ GeV and $m_H = 125$ GeV: EWPT imply that H^{\pm} and A^0 would be also light.

Parameter	Scanned range
m_h (GeV)	(10, 120)
$m_A (GeV)$	(10, 500)
$m_{H\pm}~({ m GeV})$	(80, 170)
$\sin(eta-lpha)$	(-1, 1)
$m^2_{12}~({ m GeV}~^2)$	(0, $m_A^2 \sin \beta \cos \beta$)
aneta	(2, 25)

EWPT: S and T

A.A, R. Benbrik, R. Enberg, W. Klemm, S. Moretti and S. Munir, PLB'17

э

伺 ト イヨト イヨト

Quasi-fermiophobic h^0 in 2HDM type I

- $h^0 f \bar{f} \propto \frac{\cos \alpha}{\sin \beta} \to 0$ for $\alpha \to \pi/2$, h^0 becomes fermiophobic.
- $h^0 VV \propto \sin_{\beta-\alpha} \approx 0$; $h^0 \rightarrow \{VV^*, V^*V^*\}$ very suppressed;

Quasi-fermiophobic h^0 in 2HDM type I

- $h^0 f \bar{f} \propto \frac{\cos \alpha}{\sin \beta} \to 0$ for $\alpha \to \pi/2$, h^0 becomes fermiophobic.
- $h^0 VV \propto \sin_{\beta-\alpha} \approx 0$; $h^0 \rightarrow \{VV^*, V^*V^*\}$ very suppressed;
- $h^0
 ightarrow \gamma\gamma$ mediated by H^\pm/W^\pm loops could reach 100%
- in the fermiophobic limit $h^0 \rightarrow b\overline{b}$, $h^0 \rightarrow s\overline{b}$ would compete with $h^0 \rightarrow \gamma\gamma$: Barroso, Brucher, Santos PRD'99, A.A PLB'05

Abdesslam Arhrib Multi-photons signatures at the LHC

Quasi-fermiophobic h^0 in 2HDM type I

•
$$h^0
ightarrow \gamma \gamma$$
 vs $h^0
ightarrow b \overline{b}$ at one-loop:

Abdesslam Arhrib Multi-photons signatures at the LHC

Fermiophobic Higgs searches: LEP and Tevatron

- At LEP-II: $\sigma(e^+e^- \rightarrow Zh^0) \propto \sin^2_{\beta-\alpha}$, If $\sin(\beta - \alpha) \approx 1$; $m_h < 104$ GeV is excluded. DELPHI: hep-ex/0406012 EPJC'2004 In our case $\sin(\beta - \alpha) \approx 0$
- At tevatron, similar limit from $p\bar{p} \rightarrow Wh^0 \propto \sin^2_{\beta-\alpha}$ and $p\bar{p} \rightarrow W^* \rightarrow qq'h^0 \propto \sin^2_{\beta-\alpha}$.

D0: hep-ex/0803.1514, PRL'2008

• At LEP-II: DELPHI looks to: $\sigma(e^+e^- \rightarrow A^0 h^0 \rightarrow A 2\gamma) \propto \cos^2_{\beta-\alpha}$; $A^0 \rightarrow b\bar{b}, Zh$

 $\sin^2 \delta = \sin^2(\beta - \alpha)$ Excluded: above Zh^0 and below A^0h^0

- The search channel that mostly enabled Higgs discovery was $gg \to H \to \gamma \gamma$ decay.
- Because photons final states are clean at hadronic environment LHC
- Also because of sharp resolution in the di-photon invariant mass achievable by the LHC detectors
- knowledge of $m_H = 125$ GeV, one can enforce $m_{4\gamma} = m_H$
- One can reconstruct in each event photon pairs: $m_{\gamma\gamma}=m'_{\gamma\gamma}$

ATLAS study

- G. Aad et al. [ATLAS Collaboration], "Search for new phenomena in events with at least three photons collected in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector," EPJC**76**(2016)
- ATLAS study was motivated and applied to the Next-MSSM case with light CP-odd $gg \rightarrow H \rightarrow a_1a_1 \rightarrow \gamma\gamma\gamma\gamma$.

 $gg \rightarrow H \rightarrow hh \rightarrow 4\gamma$ vs $gg \rightarrow H \rightarrow AA \rightarrow 4\gamma$

- $gg \rightarrow H \rightarrow hh \rightarrow 4\gamma$ and $gg \rightarrow H \rightarrow AA \rightarrow 4\gamma$ have the same differential cross section,
- The matrix elements can be put as

$$\mathcal{M}^{h} = C(k_{1} \cdot k_{2}\eta^{\mu\nu} - k_{2}^{\mu}k_{1}^{\nu})\epsilon_{\mu}^{*}(k_{1})\epsilon_{\nu}^{*}(k_{2})(k_{3} \cdot k_{4}\eta^{\rho\sigma} - k_{4}^{\rho}k_{3}^{\sigma})$$

$$\times \epsilon_{\rho}^{*}(k_{3})\epsilon_{\sigma}^{*}(k_{4})\delta^{ab}\epsilon(p_{1}) \cdot \epsilon(p_{2}),$$

$$\mathcal{M}^{A} = D\epsilon_{\alpha}^{*}(k_{1})\epsilon_{\beta}^{*}(k_{2})\epsilon^{\alpha\beta\mu\nu}k_{\mu}^{1}k_{\nu}^{2}\epsilon_{\rho}^{*}(k_{3})\epsilon_{\sigma}^{*}(k_{4})\epsilon^{\rho\sigma\gamma\delta}k_{\gamma}^{3}k_{\delta}^{4}\delta^{ab}\epsilon_{p_{1}}.\epsilon_{p_{2}}$$

 p_1 and p_2 is the momentum of the initial gluons, $k_1 - k_4$ are momentum of 4 photons in the final state.

•
$$|\mathcal{M}^{h,A}|^2 \propto \{C^2, D^2\}(k_1.k_2)^2(k_3.k_4)^2$$

A B + A B +

Distributions at detector level: (a) $m_{3\gamma}$ for $gg \rightarrow H \rightarrow hh \rightarrow 4\gamma$, (b) $m_{3\gamma}$ for $gg \rightarrow H \rightarrow AA \rightarrow 4\gamma$, $m_{3\gamma}$: the invariant mass of the 3 leading P_T -ordered photons

- ₹ 🖬 🕨

Distributions at detector level: (a) m_{23} for $gg \rightarrow H \rightarrow hh \rightarrow 4\gamma$ and (b) m_{23} for $gg \rightarrow H \rightarrow AA \rightarrow 4\gamma$. m_{23} : the invariant mass of the 2nd and 3rd P_T -ordered photons.

< ∃ >

Projection from 8 TeV to 14 TeV sensitivity

- In order to project the sensitivity of the future LHC run at $\sqrt{s} = 14$ TeV, we have to rescale 8 TeV results.
- The 'boost factors', for both signal and background processes is calculated using MC tools: (MadGraph 5, PYTHIA: simulate showering, hadonisation and decays and PGS to perform the fast detector simulations).

Projection from 8 TeV to 14 TeV sensitivity

- In order to project the sensitivity of the future LHC run at $\sqrt{s} = 14$ TeV, we have to rescale 8 TeV results.
- The 'boost factors', for both signal and background processes is calculated using MC tools: (MadGraph 5, PYTHIA: simulate showering, hadonisation and decays and PGS to perform the fast detector simulations).
- we adopt the same selection cuts of the ATLAS collaboration,
 - i) $n_{\gamma} \geq 3$: we consider inclusive 3 photon events. ii) The two leading photons should have a $P_t(\gamma) > 22$ GeV and the third one should have a $P_t(\gamma) > 17$ GeV
 - iii) The photons should be resolved in the range $|\eta| < 2.37$ and do not fall in the end-cap region $1.37 < |\eta| < 1.52$. iv) $\Delta R(\gamma \gamma) > 0.4$.

御 と く ほ と く ほ と

parameters	scan-1	scan-2
m _H (SM-like)	125	125
m_h	[10, 62.5]	[10, 62.5]
m _A	[62.5, 200]	[10, 200]
m_{H^\pm}	[100, 170]	[100, 170]
aneta	[2, 50]	[2, 50]
α	$\alpha = \pm \frac{\pi}{2} \mp \delta$	$s_{eta - lpha} = [-0.35, 0.0]$
m_{12}^2	$[0, \bar{100}]$	[0, 100]

イロン イロン イヨン イヨン

æ

parameters	scan-1	scan-2
m _H (SM-like)	125	125
m_h	[10, 62.5]	[10, 62.5]
m_A	[62.5, 200]	[10, 200]
m_{H^\pm}	[100, 170]	[100, 170]
aneta	[2, 50]	[2, 50]
α	$\alpha = \pm \frac{\pi}{2} \mp \delta$	$s_{eta-lpha} = [-0.35, 0.0]$
m_{12}^2	[0, 100]	[0, 100]

- Evaluate $Br(h \rightarrow \gamma \gamma)$ and $BR(H \rightarrow hh, AA)$ taking into account all LHC constraints as well as all theoretical constraints
- $\sigma(gg \to H \to hh \to \gamma\gamma\gamma\gamma) = \sigma(gg \to H)BR(H \to hh)(Br(h \to \gamma\gamma))^2$ is evaluated using the narrow width approximation.

Abdesslam Arhrib Multi-photons signatures at the LHC

æ

э

э

< ∃ →

Search for $A^0 \rightarrow \gamma \gamma, ZZ, WW$ in 2HDM w/wo VLQ

- ${\cal A}^0 \to \gamma \gamma, ZZ$ clean final states
- $A^0 \rightarrow ZZ$ can be used as a means to search for signals of CPV.
- $A^0 \rightarrow \gamma \gamma, ZZ, WW$ are all loop mediated by fermionic loops. Because in the bosonic sector, the EW theory conserves C and P while after adding fermions C and P are separately violated. Therefore, there is no contribution to $A \rightarrow VV$ from the SM bosons

Gunion, Haber, Kao PRD'92

Figure: $\sigma(pp \rightarrow A^0) \times Br(A \rightarrow \gamma \gamma)$ at $\sqrt{s} = 8 TeV$ vs m_A and $\tan\beta$.

Figure: $\sigma(pp \rightarrow A) \times Br(A \rightarrow \gamma \gamma)$ at $\sqrt{s} = 14 \, TeV$ vs m_A .

э

Figure: $\sigma(pp \to A^0) \times Br(A \to ZZ)$ at $\sqrt{s} = 8 TeV$ vs m_A and tan β .

2HDM+Vector Like single Top

Constraint from T parameter.

Figure: Upper limit at 95% CL on the mixing angle as a function of the *T* guark mass in the 2HDM-II with VLT $\longrightarrow (\overrightarrow{a}) + (\overrightarrow{a$

2HDM+VLT

Figure: 95% CL region in the $(\cos(\beta - \alpha), \tan\beta)$ plane. The gray (yellow) regions were obtained using Higgs Run 1(2) data. $|s_L| < 0.20$ and $400 < m_T < 1000$ GeV and set $y_T = 4\pi$.

Figure: $\sigma(pp \to A^0) \times Br(A \to \gamma\gamma)$ in the 2HDM+VLT at $\sqrt{s} = 8TeV$ vs m_A and tan β .

Figure: $\sigma(pp \to A^0) \times Br(A \to ZZ)$ in the 2HDM+VLT at $\sqrt{s} = 8 TeV$ vs m_A and tan β

Abdesslam Arhrib Multi-photons signatures at the LHC

Conclusions

- In 2HDM-I there is regions of the parameter space compliant with theoretical and experimental constraints yielding substantial $Br(h \rightarrow \gamma \gamma)$ as well as $Br(H \rightarrow hh)$.
- The cross section for $gg \rightarrow H \rightarrow hh \rightarrow 4\gamma$ is at pb level and is sensitive to ATLAS exclusion.
- We extrapolate our results to a collider energy of 14 TeV and luminosity of 300/fb.
- A small portion of parameter space of the 2HDM has already been probed in $A^0 \rightarrow \gamma \gamma$.
- For the case of the final states with two massive gauge bosons we are still at least one order of magnitude away from highest possible rates in the model.