Identifying a light charged Higgs boson at the LHC Run II

William Klemm

Uppsala University

william.klemm@physics.uu.se

NonMinimalHiggs collaboration meeting Lisbon, Portugal

September 3, 2018

Joint work with Abdesslam Arhrib, Rachid Benbrik, Rikard Enberg, Stefano Moretti, and Shoaib Munir [arXiv:1706.01964]

Willie Klemm (Uppsala University)

Light Charged Higgs at the LHC

September 3, 2018 1 / 14

- Background
- Parameter scans of 2HDM-I
- Fermiophic models and constraints
- The $pp
 ightarrow H^{\pm}h
 ightarrow W^{\pm} + 4\gamma$ signal and discovery potential
- Extending the DELPHI fermiophobic $e^+e^-
 ightarrow hA$ limit

- 31

くほと くほと くほと

Background

Previously: $q\bar{q} \rightarrow Z \rightarrow hA$ production and the Landau-Yang Theorem

- 2HDM-I with $m_h + m_A < m_Z$
- Light states easily accessible at LEP
- h/A hiding behind Z^*A/Z^*h decays
- Light H[±] hiding behind W*h/W*A decays
- (see also AA, RB, SMo 1607.02402)

What are the signatures of a light H^{\pm} in the 2HDM-I with $m_h < m_H = 125$ GeV?

[1605.02498] (RE, WK, SMo, SMu)

ΒP	m_h	m _A	$m_{H^{\pm}}$
1	54.2	33.0	95.9
2	22.2	64.9	101.5
3	14.3	71.6	107.2
3	14.3	/1.0	107.2

Parameter scan

Constraints on scan (95% CL)

- Unitarity, perturbativity, vacuum stability [2HDMC]
- Electroweak precision observables
- LEP, Tevatron, LHC limits [HiggsBounds 5]
- B-physics observables [Superiso]
- Reproduce observed 125 GeV signal strengths [HiggsSignals]

Parameter	Scanned range
$m_h \; ({ m GeV})$	(10, 120)
$m_A \; ({ m GeV})$	(10, 500)
$m_{H^\pm}({ m GeV})$	(80, 170)
$\sin(eta-lpha)$	(-1, 1)
$m_{12}^2 \; ({ m GeV}^2)$	(0, $m_A^2 \sin \beta \cos \beta$)
aneta	(2, 25)

Scanned ranges of the 2HDM-I parameters.

Considered possible production mechanisms and decays – several points with large $pp \rightarrow H^{\pm}h \rightarrow W^{\pm(*)}hh \rightarrow W^{\pm(*)} + 4\gamma$.

- 3

くほと くほと くほと

Fermiophobic h in the 2HDM-I

h couplings: $hf\bar{f} \propto \cos \alpha / \sin \beta$ $hVV \propto \sin(\beta - \alpha) \approx 0$ (SM-like *H*) $hH^+H^- \sim$ potential parameters

$$\cos lpha = \sin eta \sin(eta - lpha) + \cos eta \cos(eta - lpha)$$

- If $\cos \alpha$ vanishes, $h \to \gamma \gamma$ can be large, dominated by H^+ loop
- $h \to f \bar{f}/gg$ suppressed by $\cos \alpha$
- $h \rightarrow VV$ suppressed by $\sin(\beta \alpha)$ and kinematics

Large $BR(h \rightarrow \gamma \gamma)$

Constraints on Fermiophobic Models

DELPHI hA + Zh combination excludes most (m_h, m_A) accessible at LEP-II energies for exactly fermiophobic models [hep-ex/0406012].

• We model their results and extrapolate to constrain our points.

 $pp
ightarrow H^{\pm}h
ightarrow W^{\pm} + 4\gamma$

$$hH^+W^- \propto \cos(\beta - \alpha) \approx 1$$
• $pp \rightarrow W^{\pm *} \rightarrow H^{\pm}h$ maximized,
can exceed tbH^{\pm} at large tan β
• $BR(H^{\pm} \rightarrow W^{\pm}h)$ also enhanced
 $BR(h \rightarrow \gamma\gamma) \rightarrow 1$ in fermiophobic
limit

< 17 ▶

Willie Klemm (Uppsala University)

Light Charged Higgs at the LHC

September 3, 2018 7 / 14

э

3

 $pp \rightarrow H^{\pm}h \rightarrow W^{\pm} + 4\gamma$

B	Ρ	$H^{\pm} \rightarrow W^{\pm}h$	$h ightarrow \gamma \gamma$	$A ightarrow b ar{b}$				
1		1.00	0.94	$4.6 imes10^{-3}$				
2		1.00	0.97	$7.4 imes10^{-3}$				
3		1.00	0.70	0.031				
4		0.90	0.22	0.18				
5		1.00	0.71	0.017				
Branching Ratios \uparrow								

ΒP	m_h	$m_{H^{\pm}}$	m_A	$s_{\beta-lpha}$	m_{12}^2	aneta	\coslpha/\sineta	$\sigma(W^{\pm}$ 4 $\gamma)$
1	24.2	152.2	111.1	-0.048	19.0	20.9	$1.1 imes10^{-4}$	359
2	28.3	83.7	109.1	-0.050	31.3	20.2	$-5.9 imes10^{-5}$	2740
3	44.5	123.1	119.9	-0.090	30.8	10.9	$6.8 imes10^{-4}$	285
4	56.9	97.0	120.3	-0.174	243.9	5.9	$-6.5 imes10^{-3}$	39
5	63.3	148.0	129.2	-0.049	173.1	20.7	$-4.2 imes10^{-4}$	141

(masses in GeV, cross sections in fb)

Willie Klemm (Uppsala University)

Discovery potential at 13 TeV LHC

- Nearly background free $\sigma(\ell^{\pm} + 4\gamma) < 10^{-6} pb$ for $p_T > 10$ GeV
- Challenge \rightarrow objects are very soft

Likely require multi-object trigger
 e.g. p_T(1γ) > 120 GeV, p_T(2γ) > 22 GeV.

Willie Klemm (Uppsala University)

Light Charged Higgs at the LHC

Discovery potential

 $p_T^{\gamma} > 10 \text{ GeV}, p_T^{\ell} > 20 \text{ GeV}$

$p_T^{\gamma} > 20 \text{ GeV},$	$p_T^{\ell} > 10 \text{ C}$	GeV
----------------------------------	-----------------------------	-----

$m_{H^+} \setminus m_h$	20	30	40	50	60	70	80	90	100
80	0.04	0.08	0.10	0.08	0.05	< 0.01	77	$\overline{77}$	$\overline{77}$
90	0.05	0.10	0.13	0.13	0.10	0.06	< 0.01	$\langle / /$	$\overline{77}$
100	0.05	0.14	0.16	0.16	0.13	0.11	0.06	< 0.01	
110	0.06	0.13	0.18	0.19	0.17	0.16	0.13	0.07	
120	0.07	0.14	0.20	0.22	0.24	0.22	0.17	0.13	0.06
130	0.10	0.16	0.23	0.25	0.28	0.25	0.24	0.20	0.15
140	0.10	0.18	0.23	0.27	0.28	0.31	0.28	0.27	0.21
150	0.11	0.19	0.26	0.31	0.31	0.33	0.32	0.29	0.27
160	0.12	0.21	0.26	0.29	0.34	0.34	0.34	0.30	0.32

$a_{H^+} \setminus m_h$	20	30	40	50	60	70	80	90	100
80		0.03	0.05	0.06	0.07	0.03	///	$\overline{7}$	
90	0.01	0.03	0.06	0.08	0.09	0.09	0.04	$\langle / /$	
100		0.04	0.07	0.10	0.11	0.12	0.11	0.05	
110		0.03	0.07	0.11	0.13	0.16	0.17	0.15	0.05
120		0.03	0.07	0.12	0.17	0.19	0.21	0.20	0.14
130	0.02	0.04	0.07	0.12	0.16	0.21	0.24	0.25	0.22
140	0.02	0.05	0.08	0.12	0.17	0.23	0.24	0.29	0.26
150		0.06	0.10	0.15	0.18	0.25	0.27	0.29	0.30
160	0.03	0.08	0.11	0.15	0.19	0.23	0.28	0.29	0.34

Efficiencies, $\epsilon = \sigma(\text{cuts})/\sigma(\text{no cuts}) \uparrow \downarrow \text{Cross sections after cuts}$

DELPHI $e^+e^- \rightarrow hA$ limit

• Search for fermiophobic $e^+e^- \rightarrow hA$, with $h \rightarrow \gamma\gamma$, $A \rightarrow bb$ or $A \rightarrow Zh \rightarrow Z\gamma\gamma$ when kinematically allowed [hep-ex/0406012] • No general limits on (m_h, m_A)

Willie Klemm (Uppsala University)

Light Charged Higgs at the LHC

DELPHI $e^+e^- ightarrow hA$ limit

- Assume that selection efficiency has only small variation with m_h, m_A , and $182 < \sqrt{s} < 207~{\rm GeV}$
- Translate limits on $sin(\beta \alpha)$ for fermiophobic model into number of expected signal events (before selection) using known $\sigma \times BR$ for fermiophobic Higgs.

$$ilde{\mathcal{N}}_{\sf max}(m_h,m_A) = \mathcal{N}_0(m_h,m_A)(1-(s^{\lim}_{etalpha}(m_h,m_A))^2) imes {
m BR}(h_f o\gamma\gamma).$$

$$N_0(m_h, m_A) = \sum_{\{s\}} \sigma_0(s, m_h, m_A) \times \mathcal{L}(s) \qquad (\cos(\beta - \alpha) = 1)$$

 This value varies slowly in relevant region - take N
_{max} as a single parameter and fit to each curve to approximate limit:

$$\cos^{2}(\beta - \alpha) \times \mathrm{BR}(h \to \gamma \gamma) \times \mathrm{BR}(A \to X) \leq \frac{\tilde{N}_{\max}}{N_{0}(m_{h}, m_{A})}$$

Recast DELPHI $e^+e^- \rightarrow hA$ limit

(Left)Estimated limits on $\cos^2(\beta - \alpha) \times BR(h \rightarrow \gamma\gamma) \times BR(A \rightarrow b\bar{b}/Z\gamma\gamma)$ with $\tilde{N}_{max} = 8.4$. BPs are indicated in yellow circles. The dashed line indicates where $m_A = m_h + m_Z$, above which the on-shell $A \rightarrow Zh$ decay is possible. (Right) Fit to DELPHI fermiophobic hA limits.

- The nearly fermiophobic 2HDM-I still alive.
- There is potentially a large, clean $W^{\pm} + 4\gamma$ signal to be seen at the LHC.
- We encourage LHC experiments to consider multi-object triggers that would allow this sort of study.

・ 同 ト ・ 三 ト ・ 三 ト

Backup

3

▲口> ▲圖> ▲屋> ▲屋>

æ

イロト イヨト イヨト イヨト

The loop factors are defined as

$$F_{f} = \sum_{i} \frac{-2}{\tau_{f}^{2}} N_{f} Q_{f}^{2} \xi_{f}^{h} (\tau_{f} + (\tau_{f} - 1)I(\tau_{f})),$$

$$F_{H\pm} = \frac{g_{hH\pm} + \mp}{\tau_{H\pm}^{2}} \frac{m_{W}^{2}}{m_{H\pm}^{2}} (\tau_{H\pm} - I(\tau_{H\pm})),$$

$$F_{W} = \frac{\sin(\beta - \alpha)}{\tau_{W}^{2}} (2\tau_{W}^{2} + 3\tau_{W} + 3(2\tau_{W} - 1)I(\tau_{W})),$$

where

$$g_{hH\pm H\mp} = rac{1}{2m_W^2} ((2m_{H\pm}^2 - m_h^2)\sin(eta - lpha) + rac{\cos(eta - lpha)}{\sineta^2\coseta^2} (m_h^2\sineta\coseta - m_{12}^2))$$

 $\tau_x = m_h^2/(4m_x^2)$, and the scalar function I(x) is given by (from, e.g.,hep-ph/0503173, but using the opposite sign convention)

$$I(x) = \begin{cases} [\sin^{-1}(\sqrt{x})]^2, & x \le 1\\ -\frac{1}{4}[\ln(\frac{\sqrt{x}+\sqrt{x-1}}{\sqrt{x}-\sqrt{x-1}}) - i\pi]^2, & x > 1 \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙