Reconstructing (s)tops using fat jets

Michihisa Takeuchi (Heidelberg University)

with Tilman Plehn, Michael Spannowsky, Dirk Zerwas

arxiv: 1006.2833[hep-ph]

Top tagger for low pt range

Top quark: strongly related to EWSB sector

top tagging at LHC: important for new physics search

Hadronic top: full momentum reconstruction possible

Inspired by very heavy X→tt, several top taggers available

[D.E.Kaplan, K.Rehermann, M.D.Schwartz and B.Tweedie]

[D. Krohn, J. Thaler, L.T. Wang]

[L.G. Almeida, S.J. Lee, G. Perez, G. Sterman, I. Sung]

Look into jet substructure.

Designed for pT>500GeV, not expected in the SM.

For example Standard Model

Establish top tagger in low pT range (200 ~ 500 GeV) (Same for $pp \rightarrow \tilde{t}_1 \tilde{t}_1^* \rightarrow (t \tilde{\chi}_1^0) (\bar{t} \tilde{\chi}_1^0)$

Fat jets

Top Tagger: C/A algorithm with large R

top: heavy mass \rightarrow with modest pT, decay products well separated.

C/A distance at parton level

Fraction of tops within various R

R=1.5 to have top ~ 200 GeV inside fat jet.

Algorithm

1. Find fat jets using C / A algorithm with R=1.5, pT > 200 GeV

Large R collects QCD (ISR, FSR, UE and other jets).

2. Find hard objects using mass drop criterion

hard objects inside fat jet by mass drop criterion:

Undoing clustering, $m_{j_1} < 0.8 m_j$ to keep j_1 and j_2 . stop when $m_j < 30 \text{ GeV}$

?: throw away

jet 1: keep

(mass drop in $t\rightarrow Wb$ and $W\rightarrow jj$)

3. Filter and choose pairing

Take 3 sub-jets, re-cluster with $R_{\rm filt}$ and compute mass of first 5 keep pairing with best top mass.

top candidate

$$|m_{jjj} - 172.3 \text{ GeV}| < 25 \text{ GeV}$$

$$p_T^{\rm rec} > 200 \text{ GeV}$$

No b-tag, no W-mass cut yet.

tt vs. QCD, W+jets

4. check mass ratios

Cluster top candidate constituents into 3 subjets p_1, p_2, p_3

$$m_{12}, m_{13}, m_{23}$$

$$m_t^2 = m_{123}^2 = m_{12}^2 + m_{13}^2 + m_{23}^2$$

After imposing top mass cut, 2 independent mass ratios.

$$R_{\min} < \frac{m_{23}}{m_{123}} < R_{\max} \text{ and } 0.2 < \arctan \frac{m_{13}}{m_{12}} < 1.3$$

$$R_{\min}^2 \left(1 + \left(\frac{m_{13}}{m_{12}} \right)^2 \right) < 1 - \left(\frac{m_{23}}{m_{123}} \right)^2 < R_{\max}^2 \left(1 + \left(\frac{m_{13}}{m_{12}} \right)^2 \right) \text{ and } \frac{m_{23}}{m_{123}} > 0.35$$

$$R_{\min}^2 \left(1 + \left(\frac{m_{12}}{m_{13}} \right)^2 \right) < 1 - \left(\frac{m_{23}}{m_{123}} \right)^2 < R_{\max}^2 \left(1 + \left(\frac{m_{12}}{m_{13}} \right)^2 \right) \text{ and } \frac{m_{23}}{m_{123}} > 0.35$$

tt vs. QCD, W+jets

4. check mass ratios

Cluster top candidate constituents into 3 subjets p_1, p_2, p_3

$$m_{12}, m_{13}, m_{23}$$

$$m_t^2 = m_{123}^2 = m_{12}^2 + m_{13}^2 + m_{23}^2$$

After imposing top mass cut, 2 independent mass ratios.

$$\begin{split} R_{\min} &< \frac{m_{23}}{m_{123}} < R_{\max} \quad \text{and} \quad 0.2 < \arctan \frac{m_{13}}{m_{12}} < 1.3 \\ R_{\min}^2 \left(1 + \left(\frac{m_{13}}{m_{12}} \right)^2 \right) < 1 - \left(\frac{m_{23}}{m_{123}} \right)^2 < R_{\max}^2 \left(1 + \left(\frac{m_{13}}{m_{12}} \right)^2 \right) \quad \text{and} \quad \frac{m_{23}}{m_{123}} > 0.35 \\ R_{\min}^2 \left(1 + \left(\frac{m_{12}}{m_{13}} \right)^2 \right) < 1 - \left(\frac{m_{23}}{m_{123}} \right)^2 < R_{\max}^2 \left(1 + \left(\frac{m_{12}}{m_{13}} \right)^2 \right) \quad \text{and} \quad \frac{m_{23}}{m_{123}} > 0.35 \end{split}$$

tt vs. QCD, W+jets

4. check mass ratios

Cluster top candidate constituents into 3 subjets p_1, p_2, p_3

$$m_{12}, m_{13}, m_{23}$$

$$m_t^2 = m_{123}^2 = m_{12}^2 + m_{13}^2 + m_{23}^2$$

After imposing top mass cut, 2 independent mass ratios.

$$R_{\min} < \frac{m_{23}}{m_{123}} < R_{\max} \text{ and } 0.2 < \arctan \frac{m_{13}}{m_{12}} < 1.3$$

$$R_{\min}^2 \left(1 + \left(\frac{m_{13}}{m_{12}}\right)^2\right) < 1 - \left(\frac{m_{23}}{m_{123}}\right)^2 < R_{\max}^2 \left(1 + \left(\frac{m_{13}}{m_{12}}\right)^2\right) \text{ and } \frac{m_{23}}{m_{123}} > 0.35$$

$$R_{\min}^2 \left(1 + \left(\frac{m_{12}}{m_{13}}\right)^2\right) < 1 - \left(\frac{m_{23}}{m_{123}}\right)^2 < R_{\max}^2 \left(1 + \left(\frac{m_{12}}{m_{13}}\right)^2\right) \text{ and } \frac{m_{23}}{m_{123}} > 0.35$$

Efficiencies

~40% hadronic tops tagged, 2~4% mis-tag.

		$tar{t}$		QCD	W+jets		$tar{t}$		QCD	W+jets	
$p_{T,t}^{\min}[\mathrm{GeV}]$	0	200	300			0	200	300			
one fat jet	1									100%	
two fat jets	40700	20300	5810	$2.16 \cdot 10^{7}$	$1.60\cdot 10^5$	44%	57%	70%	53%	50%	relative to one fat jet
one top tag	20900	13400	4160	$8.18 \cdot 10^{5}$	$1.27 \cdot 10^4$	23%	37%	51%	2.0%	3.9%	relative to one fat jet
two top tags	1880	1630	700	11000	233	2.0%	4.5%	8.5%	0.027%	0.07%	relative to one fat jet
						4.5%	8.0%	12%	0.05%	0.15%	relative to two fat jets

Parton-jet matching

95\% in $\Delta R < 0.5$

 $80\% \text{ in } \Delta p/p^{\rm rec} < 20\%$

momentum reconstructed well

stop pairs

$$pp \to \tilde{t}_1 \tilde{t}_1^* \to (t \tilde{\chi}_1^0)(\bar{t} \tilde{\chi}_1^0) \to (bjj \tilde{\chi}_1^0)(\bar{b}jj \tilde{\chi}_1^0)$$

cuts:

2 fat jets: $p_{T,j} > 200/200 \text{ GeV}$

lepton veto

 $p_T > 150 \text{ GeV}$

2 tagged tops: $p_T^{\rm rec} > 200/200 \text{ GeV}$

b tag for 1st tagged top

 $m_{T2} > 250 \text{ GeV}$

			$ ilde{t}_1$	$ ilde{t}_1^*$			$tar{t}$	QCD	$W+{ m jets}$	$Z+{ m jets}$	S/B	$S/\sqrt{B}_{10 \text{ fb}^{-1}}$
$m_{ ilde{t}}[{ m GeV}]$	340	390	440	490	540	640						340
$p_{T,j} > 200 \text{ GeV}, \ell \text{ veto}$	728	447	292	187	124	46	87850	$2.4 \cdot 10^{7}$	$1.6 \cdot 10^{5}$		$3.0 \cdot 10^{-5}$	
$p_T > 150 \text{ GeV}$	283	234	184	133	93	35	2245	$2.4 \cdot 10^{5}$	1710		$1.2 \cdot 10^{-3}$	
first top tag	100	91	75	57	42	15	743	7590	90	114	$1.2 \cdot 10^{-2}$	
second top tag	15	12.4	11	8.4	6.3	2.3	32	129	5.7	1.4	$8.3 \cdot 10^{-2}$	
b tag	8.7	7.4	6.3	5.0	3.8	1.4	19	2.6	$\lesssim 0.2$	$\lesssim 0.05$	0.40	5.9
$m_{T2} > 250 \mathrm{GeV}$	4.3	5.0	4.9	4.2	3.2	1.2	4.2	$\lesssim 0.6$		$\lesssim 0.03$		6.1

top tag : W + jets, Z + jets negligible

b tag : QCD negligible

 m_{T2} : reduce $t\bar{t}$

Summary

Focus on low pt tops (200 to 500 GeV)

Fat jets killing combinatorics

Efficiency: top: ~40%, W+jets: 4%, QCD: 2%

Top momentum reconstructed

stop pairs: $S/B \sim 1$ and $S/\sqrt{B} \sim 5$ with 10 fb⁻¹.

Back up (R_bjj)

Back up

Back up

