

Early Data for Monte Carlo Simulations

Peter Richardson IPPP, Durham University

Summary

- Introduction
- Basics Of Monte Carlo Event Generation
- Multiple Parton-Parton Scattering
- Current Results
- Near Future
- Conclusions

Introduction

- Monte Carlo event generators are designed to simulate hadron collisions using a combination of
 - Fixed order perturbative calculations
 - Resummation of large QCD logarithms
 - Phenomenological Models
- Currently these models are tune at a range of experimental data, primarily from LEP, HERA and the Tevatron, although some earlier e⁺e⁻ and hadron collision data are also used.

A Monte Carlo Event

Introduction

- The different models are generally tuned to different types of data:
 - Parameters relating to the final-state parton shower and hadronization are tuned to LEP data;
 - Parameters relating to initial-state parton showers and multiple parton-parton interactions are tuned to data from the Tevatron and UA5.
- The big change with the current LHC data is better measurements at 900 GeV and the first results at 7 TeV.

The Underlying Event

- Protons are extended objects.
- After a parton has been scattered out of each in the hard process what happens to the remnants?

Two Types of Model:

1) Non-Perturbative:

Soft parton-parton cross section is so large that the remnants always undergo a soft collision.

2) Perturbative:

'Hard' parton-parton cross section is huge at low p_T , dominates the inelastic cross section and is calculable.

Minimum Bias and Underlying Event

- Not everyone means the same thing by "underlying event"
- The separation of the physics into the components of a model is of course dependent on the model.
- Minimum bias tends to mean all the events in hadron collisions apart from diffractive processes.
- Underlying event tends to mean everything in the event apart from the collision we are interested in.

Underlying Event

- This is one of the main problems in comparing the results of modern Monte Carlo simulations with old data.
- The data has generally been corrected using some obsolete model to remove single and/or double diffractive events.
- General problem with many experimental results in that there seems to be a reluctance to publish what was actually measured.
- This has been one of the major improvements with the recent LHC results.

Multiparton Interaction Models

- The cross-section for 2→2 scattering is dominated by tchannel gluon exchange.
- It diverges like

$$\frac{\mathrm{d}\,\sigma}{\mathrm{d}p_{\perp}^{\,2}} \approx \frac{1}{p_{\perp}^{\,4}} \quad \text{for} \qquad p_{\perp} \to 0$$

- This must be regulated used a cut of p_{Tmin}.
- For small values of p_{Tmin} this is larger than the total hadronhadron cross section.
- More than one parton-parton scattering per hadron collision

Multiparton Interaction Models

 If the interactions occur independently then follow Poissonian statistics

$$P_n = \frac{\langle n \rangle^n}{n!} e^{-\langle n \rangle}$$

 However energy-momentum conservation tends to suppressed large numbers of parton scatterings.

 Also need a model of the spatial distribution of partons within the proton.

Multiparton Interaction Models

 In general there are two options for regulating the cross section.

$$\frac{\mathrm{d}\sigma}{\mathrm{d}p_{\perp}^{2}} \propto \frac{\alpha_{s}^{2} \not p_{\perp}^{2}}{p_{\perp}^{4}} \rightarrow \frac{\alpha_{s}^{2} \not p_{\perp}^{2}}{p_{\perp}^{4}} \not p \not p_{\perp} - p_{\perp_{\min}} \quad \text{simpler}$$
or
$$\rightarrow \frac{\alpha_{s}^{2} \not p_{\perp}^{2} + p_{\perp_{0}}^{2}}{\not p_{\perp}^{2} + p_{\perp_{0}}^{2}} \qquad \text{more complicate d}$$

where $p_{\perp_{\min}}$ or p_{\perp_0} are free parameters of order 2 GeV.

- Typically 2-3 interactions per event at the Tevatron and 4-5 at the LHC.
- However tends to be more in the events with interesting high p_T ones.

Simple Model

- T. Sjostrand, M. van Zijl, PRD36 (1987) 2019.
- Sharp cut-off at p_{Tmin} is the main free parameter.
- Doesn't include diffractive events.
- Average number of interactions is

$$\langle n \rangle = \sigma_{\text{int}} (p_{\perp \text{min}}) / \sigma_{\text{non -diffractiv e}}$$

- Interactions occur almost independently, i.e. Poisson $P_n = \langle n \rangle^n e^{-\langle n \rangle} / n!$
- Interactions generated in ordered p_T sequence
- Momentum conservation in PDF's reduces the number of collisions.

More Sophisticated

- Use a smooth turn off at p_{T0} .
- Require at least 1 interaction per event
- Hadrons are extended objects, e.g. double Gaussian ("hot spots"):

$$\rho_{\text{matter}} = N_1 \exp\left(-\frac{r^2}{r_1^2}\right) + N_2 \exp\left(-\frac{r^2}{r_2^2}\right)$$

where $r_2 \neq r_1$ represents "hot spots"

- Events are distributed in impact parameter *b*.
- The hadrons overlap during the collision

$$O(b) = \int d^{3}x dt P_{1, \text{matter}}^{\text{boosted}}(x, t) P_{2, \text{matter}}^{\text{boosted}}(x, t)$$

- Average activity at b proportional to O(b).
 - Central collisions normally more active
 - more multiple scattering.

Prior to LHC

- Before the LHC data from:
 - UA5 experiment;
 - CDF at both 630, 1800 and 1960 GeV.
 - were used to constrain the parameters of the underlying event model.
- The data at the higher Tevatron energies is the best for tuning the parameters at specific energy.
- Need the other points to extrapolate the parameters to LHC energies.

Underlying Event

Herwig++ compared to CDF data

CERN 29th March

Charged Particle Multiplicities at $\sqrt{s}=0.9$, 7 TeV

Monte Carlo underestimates the track multiplicity seen in ATLAS

Physics at LHC, DESY, June 9th, 2010 – ATLAS First Physics Results

Pythia Tune to ATLAS MinBias and Underlying Event

Used for the tune

ATLAS UE data at 0.9 and 7 TeV
ATLAS charged particle densitites at 0.9 and 7 TeV
CDF Run I underlying event analysis (leading jet)
CDF Run I underlying event "Min-Max" analysis
D0 Run II dijet angular correlations

CDF Run II Min bias CDF Run I Z pT

Result

This tune describes most of the MinBias and the UE data Significant improvement compared to pre-LHC tunes Biggest remaining deviation in $\frac{1}{N_{\rm ev}} \cdot \frac{1}{2\pi p_{\rm T}} \cdot \frac{{\rm d}^2 N_{\rm ch}}{{\rm d}\eta {\rm d}p_{\rm T}}$ Needs further investigations

Physics at LHC, DESY, June 9th, 2010 – ATLAS First Physics Results

Minimum Bias

Completely new in Herwig++
 hard + soft multi-parton interaction model
 First comparison with ATLAS data looks promising...

Minimum Bias

Completely new in Herwig++

hard + soft multi-parton interaction model

First comparison with ATLAS data looks promising...

but still work to do...

New MinBias model: First preliminary results

Mean track p_T vs multiplicity, $|\eta| < 1$, $p_{\perp} > 0.4$ GeV

SHERPA as Decay generator 0000000000000000

Phys.Rev.D65:072005,2002

Phys.Rev.D79:112005,2009

Multiple Parton Scattering

- Results are encouraging.
- The results of the tunes made before data taking don't exactly agree with the data but aren't orders of magnitude off.
- Including the new results in the fitting gives good agreement.
- The models therefore seem reasonable, perhaps some theoretical tweaking needed, but not a major rethink of the whole approach.

The Rest

- The modelling of the underlying event is the thing that was most uncertain:
 - model not firmly based on perturbative QCD;
 - parameters had to be extrapolated.
- The parameters for the simulation of QCD radiation in the parton shower should be universal.
- We assume that having used the parton shower to evolve from high to low energy scales the hadronization parameters are also universal.

Jets

- There are results on:
 - jet shapes;
 - azimuthal decorrelations;
 - a lot of results on the production of jets in association with W/Z;

from the Tevatron

- However most of the measurements of pure jet production are very inclusive and not a lot of use for tuning the generators.
- Given the new energy regime we are beginning to enter this should be checked.

Jets

- The simulation of jet production usually starts from a 2→2 matrix element.
- So the distribution of the two leading jets is dominated by the hard matrix element.
- The shower gives the shape of the jet, azimuthal decorrelations and some changes in p_T and rapidity.
- The third and subsequent jets are radiated in the shower.

Jets

- There has been little work looking at jet structure in hadron collisions with the new generation of matrix element matching approaches (CKKW, MLM).
- CKKW at least works well with LEP observables, but things are different in hadron collisions where there's more energy.

Boosted Objects

- As we've spend many years simulating LEP events the simulation of the radiation in the decay of a colour neutral boosted object should be pretty reliable.
- However we have a lot less experience with simulating radiation from heavy coloured particles.
- There's only the top and due to the C.M.S. energy it doesn't radiated much at the Tevatron.

Dead-Cone

- For massive particles radiation with angle less than m/E is suppressed, the "deadcone".
- In FORTRAN HERWG made an extreme approximation which leads to problems in physical distributions.

Soft radiation pattern from a top quark with 1 TeV energy.

Top

- The parton shower is based on the collinear and soft approximations.
- The treatment of mass effects has improved theoretically over the years:
 - different evolution variables;
 - quasi-collinear splitting functions.
- However only really tested for bottom quark production.
- Any results on radiation in top events will be interesting.

Summary

- We've spent a long time developing a new generation of simulations for the LHC.
- We've done a lot to compare and tune the results to existing data.
- However as we enter the new energy regime of the LHC some things we will need to:
 - retune parameters;
 - improve the perturbative physics.
- So far things look O.K. but that may well change as statistics improve.