Boosted Final States: Beyond the Standard Model Motivation

Jay Wacker
SLAC

Boosted Final States

The Top is the heaviest mass particle in the SM

The LHC has access to much higher energy scales

Cascade decays become columnated final states

Boosted Final States

Has become a way of classifying otherwise complicated signatures

Reduces combinatoric backgrounds

Requires rethinking cuts (eg isolation)

Becomes a unifying framework for peculiar signatures that were falling between cracks

Overview

Production modes to get a boost

Resonant Production

Heavy Pair Production_

Boosted Light Particle Production

Momentum comes from produced particle's rest mass

Momentum comes produced particle's momentum

Overview

Common Decay Chains

1-step Cascade Decays

Direct Decays

The Classic Boosted Final State

$$W^{\pm}, Z^0 \to jj$$

Resonant Production

Best Opportunity for 7TeVLHC

"KK" Gluon in Technicolor & Randall Sundrum Models

Dominantly Decays into tops

$$g' \to t\bar{t}$$

$$\begin{array}{c}
g \to \iota\iota \\
t \to b\ell\nu
\end{array}$$

$$\begin{array}{c}
b \\
\nu \\
\ell
\end{array}$$

Back of the Envelope Estimate

$$m_{g'} = 1 \text{ TeV} \Rightarrow \frac{p_t}{m_t} \simeq 2.7 \equiv B$$

$$\Theta = \frac{W}{B^2 + 1}$$

$$\cos \theta \simeq \frac{B^2 - 1}{B^2 + 1}$$

$$\Delta R_t \sim 0.7$$

We will enter the Boosted Era this year

New Vector Bosons also Promising

Small Branching ratios, but easy to get larger boost

Heavy Particle Pair Production

Top Partners are common example

$$t' \to bW^+$$
 $t' \to tZ^0$ $t' \to tg$ $b' \to tW^-$ Holdom et al 1004.3031

Frequently appear in Little Higgs or Extra Dim Models

Top partners are heavy $m_{t'} \gtrsim 500 \; \mathrm{GeV}$

Cut off Top Quadratic Divergences to Higgs Mass

$$h^0 - \left(t^c\right)^t - \left(t^c\right)^t$$

Not much substructure

Too much mass for a big boost at 7 TeV

$$m_{b'} = 700 \text{ GeV}$$

$$B_t = 1.8 \quad B_W = 4.0$$

Energies/Luminosities Challenging Best case for a boosted final state:

 $t' \rightarrow tg$

The BSM Boosted Cascades

Resonant Production. $h^0 \rightarrow a^0 a^0$ $a^0 \rightarrow 2\mu, 2\gamma, 2\tau, 2b, 2c, 2g$

Lisanti et al 0903.1377
$$h^0 \rightarrow 2\mu 2\tau$$

DZero 0905.3381 $h^0 \rightarrow 4\mu$

Bellazzini et al 0906.3026
Falkowski et al 1006.1650
Chen et al 1006.1151

R-Parity Violation

$$\tilde{q} \rightarrow \tilde{\chi}^0 q$$

Butterworth et al 0906.0728

$$W_{\rm RPV} = U^c D^c D^c \implies \tilde{\chi}^0 \longrightarrow 3q$$

No significant MET, can reconstruct everything

R-Parity Violation

$$\tilde{q} \to \tilde{\chi}^0 q$$

$$W_{\rm RPV} = QD^cL \implies \tilde{\chi}^0 \to lqq$$

$$W_{\rm RPV} = LE^cL \implies \tilde{\chi}^0 \to \ell\ell\nu$$

Susy Higgs Discovery $\tilde{q} \rightarrow q\chi_2 \rightarrow q(\chi_1 h)$

$$\tilde{q} \to q \chi_2 \to q(\chi_1 h)$$

Kribs et al 0912.4731

Higgs is the boosted final state

Supersymmetric New Light Mediators

$$\mathcal{L}_{\rm int} \simeq \epsilon F^{\mu\nu} F'_{\mu\nu} \implies \mathcal{L}_{\rm int} \simeq e \epsilon A'_{\mu} J^{\mu}_{\rm EM}$$

$$\tilde{q} \to \tilde{A}' q \quad \tilde{A}' \to A' \; \tilde{G}$$
 $A' \to 2\mu, 2e$

Arkani-Hamed et al 0810.0714 Cheung et al 0909.0290

Boosted Light Particle Production

Boost comes from the pT of the process, not from a decay

Higgs Searches in Vh, or t t h

Butterworth et al 0802.2470 Plehn et al 0910.5472

Direct production of susy w/RPV

Limits on gluinos are very weak $m_{\tilde{g}} \gtrsim 50 \text{ GeV}$ gluino could be LSP... Produce high pT gluinos

Raklev et al in 1005.1229

Summary

Boosted final states unify a class of otherwise disparate signatures

Broadly grouped into leptonic and hadronic final states

Signatures & Searches are rapidly advancing!