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Study Motivation

  Mass of high-pT jets important �
property, but only theory studies
o  High mass: QCD at NLO predicts jet mass  

(eg., Ellis et al, 0712.2447,  Alemeida, et al. 0810.0934)
o  Such jets form significant background �

to new physics signals
  Examples: high pT tops, Higgs, neutralino … 

  Focus on jets with pT>400 GeV/c
o  CDF II has collected ~8 fb-1

o  Have several thousand jet candidates
o  Reporting first systematic study of �

substructure

Ellis et al., 0712.2447 (2007). 

CDF Collaboration, PRD 78, 052006 (2008) 
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Boosted Objects at Tevatron

  SM sources for high-pT 
objects calculable
o  Dominated by light quarks 

& gluons 

  However, do expect 
other contributions
o  Fraction of top quarks 

~1.5% for pT>400 GeV/c
  Total rate 4.45±0.5 fb 

(Kidonakis & Vogt)

o  Expect W/Z production of 
similar order

Weizmann/UofT 

Kidonakis & Vogt, PRD 68, 114014 (2003)  

PYTHIA 6.4 Calculation 
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Strategy for Analysis

  Select high pT jets in CDF�
central calorimeter
o  Use tower segmentation to measure�

jet mass
  Confirm with tracking information

o  Employ standard “e-scheme” for �
mass calculation
  4-vector sum over towers in jet
  Each tower is a particle with m = 0
  Four vector sum gives (E,px,py,pz)

  Employ Midpoint cone jets
o  Best understood in CDF II context
o  However, not fully IR-safe

Weizmann/UofT 

N.B. CDF central 
towers are  
Δη x Δφ ~ 0.11 x 0.26 
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Data Selection

  Analyzed inclusive jet sample
o  Trigger requires ET>100 GeV
o   Have available 5.95 fb-1 sample

  Selected data with focus on 
high pT objects
o  Kept any event with

  Jet with pT>300 GeV/c �
and |η|<0.7

  Used cones of R=0.4, 0.7 �
and 1.0

  Processed 76M events
o  Selected subsample with 

  pT>400 GeV/c
  |η| ∈ (0.1,0.7)

  Performed �
cleaning cuts
o  Event vertex, jet quality �

and loose SMET (< 14)

  Resulted in 3621 events�
using jets with R=0.7
o  3136 events with R=0.4

Weizmann/UofT 

SMET ≡
ET

MISS
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Jet Mass Corrections

  Corrected jet mass using �
standard jet corrections
o  Further correction needed for �

multiple interactions (MI)
o  Use Nvtx=1 and Nvtx>1 events �

to determine MI

  Investigated other effects:
o  Cluster merging
o  Effect of calorimeter inhomogeneity at η=0

  Varied pseudorapidity window – no significant changes in mass

o  Calorimeter segmentation and jet recombination
  Varied position of towers (especially azimuth) and corrections for geometry

o  Calorimeter response across face of jet
  Detailed study of tracking/calorimeter response in data and MC/detector simulation

Weizmann/UofT 

CDF Collaboration, NIM A  566, 375 (2006) 



7

MI and UE Corrections

  Additional contribution from
o  Underlying Event (UE)
o  Multiple Interactions (MI)

  Average # interactions 2-3

o  Corrected for MI

  Looked at purely dijet events
o  Defined cones (same size as jet) at 90o in 

azimuth (same η)
o  Took towers in cones, �

and added to jet in event
  Mass shift, on average, same shift 

coming from UE and MI

  Separately measure Nvtx=1 events
o  Gives UE correction separately

Weizmann/UofT 

Correction 
scales as R4 
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Inter-Jet Energy Calibration

  Jet mass arises from 
deposition of varying energy 
per tower
o  Performed study to compare 

momentum flow vs calorimeter 
energy internal to jet
  Defined 3 rings and compared 

observed pT/ET with simulation

  Resulted in constraints on 
calorimeter relative response
o  At mjet=60 GeV/c2, σm=1 GeV/c2

o  At mjet=120 GeV/c2, σm=9.6 GeV/c2

  Largest source of systematic 
uncertainty

Weizmann/UofT 
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Systematics on mjet

  Sources of systematics:
o  Calorimeter energy scale

  Varies from 1 to 9.6 GeV/c2 for 
65 to 120 GeV/c2 mass jets

o  UE and MI modelling
  Estimate 2 GeV/c2 based on 

uncertainty in high mass 
correction

o  Recombination scheme & 
calorimeter segmentation
  Estimate 2.2 GeV/c2 based on 

comparison of offline and 
ntuple results

o  PDF Uncertainties
  Used standard 20 eigenvector 

decomposition to assess MC 
uncertainties

  Believes uncertainties on data 
are uncorrelated
o  Combined in quadrature, gives 

total jet mass uncertainty of 
  3.4 GeV/c2 for mjet = 60 GeV/c2

  10.5 GeV/c2 for mjet > 100 GeV/c2

  Effects jet mass distributions 
arising from bin-to-bin 
migration
o  Don’t see a systematic shift in 

other substructure variables
o  Still more detailed investigation 

underway

Weizmann/UofT 
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Reducing Top Contamination

  Expect about 2.2 fb of high pT jets 
from top in sample
o  Eliminate by rejecting events with

  mjet2 > 100 GeV/c2

  Missing ET Significance (SMET) > 4
o  Use jet cone of R=1.0 for �

improving top jet tagging
  See clear peak in MC for �

second jet mass
o  Lose 29% of jet candidates

  2576 events using R=0.7 jets
  145 events with jet with pT > 500 GeV/c

  After top-rejection, �
expect ~0.5 fb of top jets
o  Comparable rates for W/Z jets

Weizmann/UofT 
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Focus on QCD Behaviour

  After top rejection
o  Left with sample dominated 

by light quarks and gluon
o  Compare high mass region 

with QCD theory
o  Use cones of R=0.4 and 

R=0.7

Weizmann/UofT 

  Low-mass peak arises from non-
perturbative QCD effects
o  Opportunity to study the 

properties of the high mass jets
o  Gilad will say more…
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Comparison with PYTHIA
  PYTHIA 6.1.4

o  Standard CDF II 
QCD sample

o  PDF 
uncertainties 
based on 
eigenvector 
decomposition

  Agreement is just 
“OK”
o  Low-mass peak 

few GeV/c2 lower
o  Systematic 

underestimate at 
higher masses

Weizmann/UofT 
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What About Boosted Top?

  Is it possible to detect top (or 
place meaningful upper limits)?

  Two topologies:
1.  All hadronic

  Two massive jets recoiling (ε ~15%)

2.  Semi-leptonic (neutrino)
  Require  SMET > 4 (ε ~ 10%)

  MC predicts ~2.2 fb
o  Divided about 60:40 �

between topologies
  Highest efficiency channel for top (>20%)

o  Important handles for background:  
  masses of QCD di-jets not correlated
  Jet mass and SMET not correlated

o  Still to come…. Weizmann/UofT 

γ ~ 2.5 
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Conclusions

  First measurement of jet 
mass and substructure for 
high pT jets
o  Being confronted by data 

forces one to understand 
systematics

  Multiple interaction corrections
  Calibration of mass scale

o  Allows for test of QCD 
predictions:
  Jet mass
  Angularity
  Planar Flow

  Next talk will show results 
for high mass jets

  Top counting experiment 
looks do-able
o  Does b-tagging help?  We’re 

trying it out….
o  Need to assess systematics

  Next steps:
o  Compare results with anti-kT 

clustering
o  Compare predictions of Sherpa 

Monte Carlo calculation 
o  More work on systematics

  Currently limited by �
MC statistics and time

Weizmann/UofT 
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BACKUP SLIDES 
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MI/UE Corrections

  Looked at how to make MI 
correction in a variety of 
ways
o  Looked at mass corrections 

event-by-event
o  But statistical fluctuations 

large, event-to-event
o  Chose to develop a 

parametrized correction

  Note that:

Weizmann/UofT 

δm jet

EtowerEjetΔR

m jet

  Expect MI correction to scale 
with R4:
o  Exactly what we see when 

comparing R=0.4 and R=0.7

  PYTHIA UE agrees well with 
data – same UE mass 
correction

  Use that to  scale corrections 
for R=1.0
o  Method doesn’t work with 

larger cone because of overlap
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Internal Jet Energy Scale

  Overall jet energy scale 
known to 3%
o  The relative energy scale 

between rings known to 
10-20%, depending on ring

o  Use this to constrain how far 
energy scale can shift

  Do first for mjet ~ 60 GeV/c2 – 
use average jet profile
o  Extract from that a limit on 

how much “Ring 1” energy 
scale can be off - ± 6%

o  Then do the same for mjet ~ 
120 GeV/c2

Weizmann/UofT 

  Resulting systematic 
uncertainty is 9.6 GeV/c2

o  Conservative estimate – used a 
very broad energy profile

  No localized substructure 
assumed

  Take this as systematic 
uncertainty
o  Could constrain it better using 

single particle response

o  Note that fixed cone size is an 
advantage here
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Reconstruction of Top

  Leading jet in ttbar events 
has clear top mass peak
o  All events between 70 and 210 

GeV/c2 for R=1.0
o  See clear W peak

  B quark jet presumably nearby in 
those cases

o  Clear that higher mass cut gives 
greater QCD rejection

o  Much optimization to do

  B tagging not yet used
o  Now investigating what its 

impact will be
o  Will need to assess efficiencies 

and mis-tagging rates

Weizmann/UofT 


