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Study Motivation


  Mass of high-pT jets important �
property, but only theory studies

o  High mass: QCD at NLO predicts jet mass  

(eg., Ellis et al, 0712.2447,  Alemeida, et al. 0810.0934)

o  Such jets form significant background �

to new physics signals

  Examples: high pT tops, Higgs, neutralino … 


  Focus on jets with pT>400 GeV/c

o  CDF II has collected ~8 fb-1


o  Have several thousand jet candidates

o  Reporting first systematic study of �

substructure


Ellis et al., 0712.2447 (2007). 

CDF Collaboration, PRD 78, 052006 (2008) 
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Boosted Objects at Tevatron


  SM sources for high-pT 
objects calculable

o  Dominated by light quarks 

& gluons 


  However, do expect 
other contributions

o  Fraction of top quarks 

~1.5% for pT>400 GeV/c

  Total rate 4.45±0.5 fb 

(Kidonakis & Vogt)


o  Expect W/Z production of 
similar order


Weizmann/UofT 

Kidonakis & Vogt, PRD 68, 114014 (2003)  

PYTHIA 6.4 Calculation 
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Strategy for Analysis


  Select high pT jets in CDF�
central calorimeter

o  Use tower segmentation to measure�

jet mass

  Confirm with tracking information


o  Employ standard “e-scheme” for �
mass calculation

  4-vector sum over towers in jet

  Each tower is a particle with m = 0

  Four vector sum gives (E,px,py,pz)


  Employ Midpoint cone jets

o  Best understood in CDF II context

o  However, not fully IR-safe


Weizmann/UofT 

N.B. CDF central 
towers are  
Δη x Δφ ~ 0.11 x 0.26 
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Data Selection


  Analyzed inclusive jet sample

o  Trigger requires ET>100 GeV

o   Have available 5.95 fb-1 sample


  Selected data with focus on 
high pT objects

o  Kept any event with


  Jet with pT>300 GeV/c �
and |η|<0.7


  Used cones of R=0.4, 0.7 �
and 1.0


  Processed 76M events

o  Selected subsample with 


  pT>400 GeV/c

  |η| ∈ (0.1,0.7)


  Performed �
cleaning cuts

o  Event vertex, jet quality �

and loose SMET (< 14)


  Resulted in 3621 events�
using jets with R=0.7

o  3136 events with R=0.4


Weizmann/UofT 
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Jet Mass Corrections


  Corrected jet mass using �
standard jet corrections

o  Further correction needed for �

multiple interactions (MI)

o  Use Nvtx=1 and Nvtx>1 events �

to determine MI


  Investigated other effects:

o  Cluster merging

o  Effect of calorimeter inhomogeneity at η=0


  Varied pseudorapidity window – no significant changes in mass


o  Calorimeter segmentation and jet recombination

  Varied position of towers (especially azimuth) and corrections for geometry


o  Calorimeter response across face of jet

  Detailed study of tracking/calorimeter response in data and MC/detector simulation


Weizmann/UofT 

CDF Collaboration, NIM A  566, 375 (2006) 
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MI and UE Corrections


  Additional contribution from

o  Underlying Event (UE)

o  Multiple Interactions (MI)


  Average # interactions 2-3


o  Corrected for MI


  Looked at purely dijet events

o  Defined cones (same size as jet) at 90o in 

azimuth (same η)

o  Took towers in cones, �

and added to jet in event

  Mass shift, on average, same shift 

coming from UE and MI


  Separately measure Nvtx=1 events

o  Gives UE correction separately


Weizmann/UofT 

Correction 
scales as R4 
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Inter-Jet Energy Calibration


  Jet mass arises from 
deposition of varying energy 
per tower

o  Performed study to compare 

momentum flow vs calorimeter 
energy internal to jet

  Defined 3 rings and compared 

observed pT/ET with simulation


  Resulted in constraints on 
calorimeter relative response

o  At mjet=60 GeV/c2, σm=1 GeV/c2


o  At mjet=120 GeV/c2, σm=9.6 GeV/c2


  Largest source of systematic 
uncertainty


Weizmann/UofT 
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Systematics on mjet


  Sources of systematics:

o  Calorimeter energy scale


  Varies from 1 to 9.6 GeV/c2 for 
65 to 120 GeV/c2 mass jets


o  UE and MI modelling

  Estimate 2 GeV/c2 based on 

uncertainty in high mass 
correction


o  Recombination scheme & 
calorimeter segmentation

  Estimate 2.2 GeV/c2 based on 

comparison of offline and 
ntuple results


o  PDF Uncertainties

  Used standard 20 eigenvector 

decomposition to assess MC 
uncertainties


  Believes uncertainties on data 
are uncorrelated

o  Combined in quadrature, gives 

total jet mass uncertainty of 

  3.4 GeV/c2 for mjet = 60 GeV/c2


  10.5 GeV/c2 for mjet > 100 GeV/c2


  Effects jet mass distributions 
arising from bin-to-bin 
migration

o  Don’t see a systematic shift in 

other substructure variables

o  Still more detailed investigation 

underway


Weizmann/UofT 
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Reducing Top Contamination


  Expect about 2.2 fb of high pT jets 
from top in sample

o  Eliminate by rejecting events with


  mjet2 > 100 GeV/c2


  Missing ET Significance (SMET) > 4

o  Use jet cone of R=1.0 for �

improving top jet tagging

  See clear peak in MC for �

second jet mass

o  Lose 29% of jet candidates


  2576 events using R=0.7 jets

  145 events with jet with pT > 500 GeV/c


  After top-rejection, �
expect ~0.5 fb of top jets

o  Comparable rates for W/Z jets


Weizmann/UofT 
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Focus on QCD Behaviour


  After top rejection

o  Left with sample dominated 

by light quarks and gluon

o  Compare high mass region 

with QCD theory

o  Use cones of R=0.4 and 

R=0.7


Weizmann/UofT 

  Low-mass peak arises from non-
perturbative QCD effects

o  Opportunity to study the 

properties of the high mass jets

o  Gilad will say more…
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Comparison with PYTHIA

  PYTHIA 6.1.4


o  Standard CDF II 
QCD sample


o  PDF 
uncertainties 
based on 
eigenvector 
decomposition


  Agreement is just 
“OK”

o  Low-mass peak 

few GeV/c2 lower

o  Systematic 

underestimate at 
higher masses


Weizmann/UofT 
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What About Boosted Top?


  Is it possible to detect top (or 
place meaningful upper limits)?


  Two topologies:

1.  All hadronic


  Two massive jets recoiling (ε ~15%)


2.  Semi-leptonic (neutrino)

  Require  SMET > 4 (ε ~ 10%)


  MC predicts ~2.2 fb

o  Divided about 60:40 �

between topologies

  Highest efficiency channel for top (>20%)


o  Important handles for background:  

  masses of QCD di-jets not correlated

  Jet mass and SMET not correlated


o  Still to come….
 Weizmann/UofT 

γ ~ 2.5 
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Conclusions


  First measurement of jet 
mass and substructure for 
high pT jets

o  Being confronted by data 

forces one to understand 
systematics


  Multiple interaction corrections

  Calibration of mass scale


o  Allows for test of QCD 
predictions:

  Jet mass

  Angularity

  Planar Flow


  Next talk will show results 
for high mass jets


  Top counting experiment 
looks do-able

o  Does b-tagging help?  We’re 

trying it out….

o  Need to assess systematics


  Next steps:

o  Compare results with anti-kT 

clustering

o  Compare predictions of Sherpa 

Monte Carlo calculation 

o  More work on systematics


  Currently limited by �
MC statistics and time


Weizmann/UofT 
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BACKUP SLIDES 
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MI/UE Corrections


  Looked at how to make MI 
correction in a variety of 
ways

o  Looked at mass corrections 

event-by-event

o  But statistical fluctuations 

large, event-to-event

o  Chose to develop a 

parametrized correction


  Note that:


Weizmann/UofT 

δm jet

EtowerEjetΔR

m jet

  Expect MI correction to scale 
with R4:

o  Exactly what we see when 

comparing R=0.4 and R=0.7


  PYTHIA UE agrees well with 
data – same UE mass 
correction


  Use that to  scale corrections 
for R=1.0

o  Method doesn’t work with 

larger cone because of overlap
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Internal Jet Energy Scale


  Overall jet energy scale 
known to 3%

o  The relative energy scale 

between rings known to 
10-20%, depending on ring


o  Use this to constrain how far 
energy scale can shift


  Do first for mjet ~ 60 GeV/c2 – 
use average jet profile

o  Extract from that a limit on 

how much “Ring 1” energy 
scale can be off - ± 6%


o  Then do the same for mjet ~ 
120 GeV/c2


Weizmann/UofT 

  Resulting systematic 
uncertainty is 9.6 GeV/c2


o  Conservative estimate – used a 
very broad energy profile


  No localized substructure 
assumed


  Take this as systematic 
uncertainty

o  Could constrain it better using 

single particle response


o  Note that fixed cone size is an 
advantage here
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Reconstruction of Top


  Leading jet in ttbar events 
has clear top mass peak

o  All events between 70 and 210 

GeV/c2 for R=1.0

o  See clear W peak


  B quark jet presumably nearby in 
those cases


o  Clear that higher mass cut gives 
greater QCD rejection


o  Much optimization to do


  B tagging not yet used

o  Now investigating what its 

impact will be

o  Will need to assess efficiencies 

and mis-tagging rates


Weizmann/UofT 


