Massive High P_T **Jets: Preliminary Results from CDF**

Outline

- 1. Introduction and Motivation
- 2. Data Selection
- 3. Calibrating and Correcting Jet Mass
- 4. Systematic Uncertainties
- 5. Results (Mostly Next Talk)
- 6. Next Steps

Representing CDF Collaboration

Raz Alon, Gilad Perez & Ehud Duchovni Weizmann Institute of Science

&

Pekka K. Sinervo, FRSC University of Toronto

Study Motivation

- Mass of high-p_T jets important property, but only theory studies
 - O High mass: QCD at NLO predicts jet mass (eg., Ellis et al, 0712.2447, Alemeida, et al. 0810.0934)
 - Such jets form significant background to new physics signals
 - > Examples: high p_T tops, Higgs, neutralino ...
- Focus on jets with $p_T>400 \text{ GeV/c}$
 - CDF II has collected ~8 fb⁻¹
 - Have several thousand jet candidates
 - Reporting first systematic study of substructure

CDF Collaboration, PRD 78, 052006 (2008)

Boosted Objects at Tevatron

- SM sources for high-p_T objects calculable
 - Dominated by light quarks & gluons
- However, do expect other contributions
 - Fraction of top quarks~1.5% for p_T>400 GeV/c
 - Total rate 4.45±0.5 fb (Kidonakis & Vogt)
 - Expect W/Z production of similar order

Kidonakis & Vogt, PRD 68, 114014 (2003)

PYTHIA 6.4 Calculation

Strategy for Analysis

- Select high p_T jets in CDF central calorimeter
 - Use tower segmentation to measure jet mass
 - Confirm with tracking information
 - Employ standard "e-scheme" for mass calculation
 - > 4-vector sum over towers in jet
 - \triangleright Each tower is a particle with m = 0
 - > Four vector sum gives (E,p_x,p_y,p_z)
- **Employ Midpoint cone jets**
 - Best understood in CDF II context
 - However, not fully IR-safe

N.B. CDF central towers are $\Delta \eta \times \Delta \phi \sim 0.11 \times 0.26$

Data Selection

- Analyzed inclusive jet sample
 - Trigger requires E_T >100 GeV
 - Have available 5.95 fb⁻¹ sample
- Selected data with focus on high p_T objects
 - Kept any event with
 - > Jet with $p_T>300 \text{ GeV/c}$ and $|\eta|<0.7$
 - ➤ Used cones of R=0.4, 0.7 and 1.0
- Processed 76M events
 - Selected subsample with
 - \rightarrow p_T>400 GeV/c
 - $|\eta| \in (0.1,0.7)$

Performed cleaning cuts

- Event vertex, jet quality and loose S_{MET} (< 14)
- Resulted in 3621 events using jets with R=0.7
 - \circ 3136 events with R=0.4

Jet Mass Corrections

- Corrected jet mass using standard jet corrections
 - Further correction needed for multiple interactions (MI)
 - Use Nvtx=1 and Nvtx>1 events to determine MI

- Cluster merging
- Effect of calorimeter inhomogeneity at $\eta=0$
 - Varied pseudorapidity window no significant changes in mass
- Calorimeter segmentation and jet recombination
 - Varied position of towers (especially azimuth) and corrections for geometry
- Calorimeter response across face of jet
 - > Detailed study of tracking/calorimeter response in data and MC/detector simulation

MI and UE Corrections

Additional contribution from

- Underlying Event (UE)
- Multiple Interactions (MI)
 - > Average # interactions 2-3
- Corrected for MI

Looked at purely dijet events

- O Defined cones (same size as jet) at 90° in azimuth (same η)
- Took towers in cones, and added to jet in event
 - Mass shift, on average, same shift coming from UE and MI

Gives UE correction separately

Correction scales as R⁴

Inter-Jet Energy Calibration

- Jet mass arises from deposition of varying energy per tower
 - Performed study to compare momentum flow vs calorimeter energy internal to jet
 - Defined 3 rings and compared observed pT/ET with simulation
- Resulted in constraints on calorimeter relative response
 - At $m^{jet}=60 \text{ GeV/c}^2$, $\sigma_m=1 \text{ GeV/c}^2$
 - \circ At m^{jet}=120 GeV/c², $\sigma_{\rm m}$ =9.6 GeV/c²
- Largest source of systematic uncertainty

Ring 1 $\Delta\eta X\Delta\phi$ =0.44x0.52 (yellow) Ring 2 $\Delta\eta X\Delta\phi$ =0.88x1.04 (green) Ring 3 $\Delta\eta X\Delta\phi$ =1.32x1.57 (blue)

Systematics on m^{jet}

Sources of systematics:

- Calorimeter energy scale
 - Varies from 1 to 9.6 GeV/c² for
 65 to 120 GeV/c² mass jets
- UE and MI modelling
 - Estimate 2 GeV/c² based on uncertainty in high mass correction
- Recombination scheme & calorimeter segmentation
 - ➤ Estimate 2.2 GeV/c² based on comparison of offline and ntuple results
- PDF Uncertainties
 - Used standard 20 eigenvector decomposition to assess MC uncertainties

- Believes uncertainties on data are uncorrelated
 - Combined in quadrature, gives total jet mass uncertainty of
 - \rightarrow 3.4 GeV/c² for m^{jet} = 60 GeV/c²
 - $> 10.5 \text{ GeV/c}^2 \text{ for m}^{\text{jet}} > 100 \text{ GeV/c}^2$
- Effects jet mass distributions arising from bin-to-bin migration
 - Don't see a systematic shift in other substructure variables
 - Still more detailed investigation underway

Reducing Top Contamination

- Expect about 2.2 fb of high p_T jets from top in sample
 - Eliminate by rejecting events with
 - $> m^{\text{jet2}} > 100 \text{ GeV/c}^2$
 - \triangleright Missing E_T Significance (S_{MET}) > 4
 - Use jet cone of R=1.0 for improving top jet tagging
 - See clear peak in MC for second jet mass
 - Lose 29% of jet candidates
 - > 2576 events using R=0.7 jets
 - > 145 events with jet with $p_T > 500 \text{ GeV/c}$
- After top-rejection,expect ~0.5 fb of top jets
 - Comparable rates for W/Z jets

Focus on QCD Behaviour

After top rejection

- Left with sample dominated by light quarks and gluon
- Compare high mass region with QCD theory
- Use cones of R=0.4 and R=0.7

Cut Flow		
All Data, 5.95 fb ⁻¹	75,764,270 events	
	$\mathbf{R} = 0.4$	$\mathbf{R} = 0.7$
At least one jet with	3136 events	3621 events
$p_T > 400 \text{ GeV/c},$		
$ \eta $ in $(0.1, 0.7)$,		
and event quality cuts		
$m^{\text{jet}2} < 100 \text{ GeV/c}^2 \text{ and}$	2579 events	2576 events
$S_{MET} < 4$		
(with $p_T^{jet2} > 100 \text{ GeV/c}$ and MI		
corrections)		

- Low-mass peak arises from nonperturbative QCD effects
 - Opportunity to study the properties of the high mass jets
 - Gilad will say more...

Comparison with PYTHIA

PYTHIA 6.1.4

- Standard CDF II QCD sample
- PDF

 uncertainties
 based on
 eigenvector
 decomposition
- Agreement is just "OK"
 - Low-mass peak few GeV/c² lower
 - Systematic underestimate at higher masses

What About Boosted Top?

- Is it possible to detect top (or place meaningful upper limits)?
- Two topologies:

γ **~** 2.5

- 1. All hadronic
 - > Two massive jets recoiling ($\epsilon \sim 15\%$)
- 2. Semi-leptonic (neutrino)
 - > Require $S_{MET} > 4 (\epsilon \sim 10\%)$
- MC predicts ~2.2 fb
 - Divided about 60:40 between topologies
 - ➤ Highest efficiency channel for top (>20%)
 - Important handles for background:
 - > masses of QCD di-jets not correlated
 - $\,\succ\,$ Jet mass and S_{MET} not correlated

Conclusions

- First measurement of jet mass and substructure for high p_T jets
 - Being confronted by data forces one to understand systematics
 - > Multiple interaction corrections
 - Calibration of mass scale
 - Allows for test of QCD predictions:
 - > Jet mass
 - Angularity
 - > Planar Flow
- Next talk will show results for high mass jets

- Top counting experiment looks do-able
 - Does b-tagging help? We're trying it out....
 - Need to assess systematics
- Next steps:
 - Compare results with anti-kT clustering
 - Compare predictions of Sherpa
 Monte Carlo calculation
 - More work on systematics
 - Currently limited by MC statistics and time

BACKUP SLIDES

MI/UE Corrections

- Looked at how to make MI correction in a variety of ways
 - Looked at mass corrections event-by-event
 - But statistical fluctuations large, event-to-event
 - Chose to develop a parametrized correction
- Note that:

$$\delta m^{jet} \simeq \frac{E_{tower} E_{jet} \Delta R}{m^{jet}}$$

- Expect MI correction to scale with R⁴:
 - Exactly what we see when comparing R=0.4 and R=0.7
- PYTHIA UE agrees well with data – same UE mass correction
- Use that to scale corrections for R=1.0
 - Method doesn't work with larger cone because of overlap

Internal Jet Energy Scale

- Overall jet energy scale known to 3%
 - The relative energy scale between rings known to 10-20%, depending on ring
 - Use this to constrain how far energy scale can shift
- Do first for m^{jet} ~ 60 GeV/c² use average jet profile
 - Extract from that a limit on how much "Ring 1" energy scale can be off - ± 6%
 - Then do the same for mjet ~
 120 GeV/c²

- Resulting systematic uncertainty is 9.6 GeV/c²
 - Conservative estimate used a very broad energy profile
 - No localized substructure assumed
- Take this as systematic uncertainty
 - Could constrain it better using single particle response
 - Note that fixed cone size is an advantage here

Reconstruction of Top

- Leading jet in ttbar events has clear top mass peak
 - All events between 70 and 210
 GeV/c² for R=1.0
 - See clear W peak
 - B quark jet presumably nearby in those cases
 - Clear that higher mass cut gives greater QCD rejection
 - Much optimization to do
- B tagging not yet used
 - Now investigating what its impact will be
 - Will need to assess efficiencies and mis-tagging rates

