

Lepton Jets Working Group Report

C. Hill, J. Wacker

Roll Call

- Jay W. (theory)
- Chris Hill (CMS)
- Chris Hays (CDF)
- Andy H. (D0/ATLAS)
- Eva H. (CDF/CMS)
- Lucas K. (CMS)
- James J. (CMS)
- Dave N. (CMS)
- Emanuel S. (ATLAS)

Small group,
almost all
experimentalists

From Boost 2009

Summary

Still making operative definitions of lepton Jets

New signals + tools appearing

Important searches to be done at Tevatron

Early searches possible at LHC

B-Physics & Fixed Targets Experiments

SLAC Workshop on Dark Forces: Sept 24-26, 2009

From Boost 2009

Advances to improve theoretical prediction

Showering & Hadronization (Abelian & Non-Abelian)

Parameterization/Categorization of Lepton jets & Production modes for benchmarks

Implementation of benchmarks into MCs

highlighting sensitivity differences between Tevatron/LHC/B-factories/Fixed Target/LHCb

Review of Current Lepton Jet Analysis Activity

- Susy-like (D0)
 - 2 lepton jets + MET counting experiment (also w/o MET)
 - 2 lepton jets + MET bump hunt (also w/o MET)
- Photon + MET + lepton jet (D0)
- Double bump hunt (cascade, no MET)
- Lepton-jets with multi leptons (multiple)
 - Also including taus
- Inclusive search, interpret in several models (CDF)

Tevatron

more

advanced than

LHC

Searches motivated
by models w/
boosted final states;
no analyses exploiting
boosted leptons in
difficult nonboosted searches

Models

- Mainly light dark matter inspired models with a dark sector
- Also light higgs models that evade LEP limits

Higgs-like

Simple Lepton-Jets

- For a benchmark, use GMSB SPS8 point, $\sigma = 20 \text{fb}$
 - Kinematics do not change much for other similar SUSY points
- All SM LSPs decay to 1-jet
- Focus on simpler case of dark photon + darkino (MET) first

Simplest

case, 2 lepton

lepton jets,

counting

experiment

Resonance Search

For events with 2 isolated l-jets and MET>30 GeV, look for resonance in track / companion track mass

Background estimated from isolated di-l-jet sample with MET<20 GeV

BR's, mass windows:

$m(\gamma_D) \; (\text{GeV})$	${\rm BR}({\rm ee})(\mu\mu)$	$M_{reco}^{low}\text{-}M_{reco}^{high} \ (\mathrm{GeV})$	Eff. e	Eff. μ
0.15	1 0	0.0 - 0.3	0.81	-
0.3	$0.53\ 0.47$	0.1 - 0.4	0.82	0.88
0.5	0.4 0.4	0.3 - 0.6	0.81	0.89
0.7	$0.15\ 0.15$	0.4 - 0.8	0.85	0.89
0.9	$0.27\ 0.27$	0.6 - 1.1	0.82	0.91
1.3	$0.31\ 0.31$	0.9 - 1.4	0.72	0.79
1.7	$0.22\ 0.22$	1.0 - 1.8	0.73	0.76
2.0	$0.24\ 0.24$	1.3 - 2.2	0.73	0.83

Next Step,
2 lepton
lepton jets,
scan
dilepton inv.
mass

Multi-Lepton Lepton Jets

Lepton Jets Production Example

Slightly
more
complex is
final states
with many
leptons in
lepton-jet

Signature we are considering here: 2 regular jets, plus 2 lepton jets, plus MET

Cascade into hidden sector

Blue = visible sector Red = hidden sector

γ_d Branching Ratio

http://arxiv.org/abs/1002.2952

Falkowski, Ruderman, Volansky, Zupan

Still more complex is if γ_d can decay to hadrons

Lepton-jet normal jet boundary blurred

BOOST 2010 - E. Halkiadakis

Open Questions & Wishlist

- How can we compare results between experiments (e.g. Tevatron vs. B-factories)?
 - Want (minimal) parameterisation of signals
 - Classification & benchmarks
- What do we know about SM backgrounds and how to deal with them (from Tevatron)?
 how do they translate to the LHC?
 - Conversions
 - Punch-through
 - Instrumental effects
 - Rare SM processes (dimuons from hadronic interactions with material)

Example of exploiting boost in difficult search

Boosted light Higgs from TeV scale resonance: $h \to \tau \tau$

Andrey Katz

Nork in progress with Minho Son and Brock Tweedie

University of Maryland

Define new objects: mutually isolated lepton and τ .

How well do we reconstruct these events?

- 85% of all leptonic Zs are reconstructed
- out of these events we properly reconstruct almost all dileptonic Higgses (above 95%).
- around 65% of the semileptonic events are reconstructed properly

Open Questions & Wishlist (continued)

- Boostedness of lepton-jet depends on masses in models (e.g. near degenerate states can give rise to hardly boosted dark sector particles)
 - What are the constraints (from theory side) on these masses?
 - What is the transition region where (on experimental side) the lepton-jet concept disappears (signal reverts to plain SUSY-like)
- Are jet clustering algorithms helpful in identifying lepton jets?
 - What about sub-jet algorithms (e.g. for electron jets)?
- How feasible experimentally are photon-jets signatures?
 - Would conversion of the photons help or hurt?
- Do false boost lepton-jet systems (e.g. H->WW) benefit from being boosted?

- Short write-up summarising:
 - Presentations given during Boost 2010
 - Gather contributions on open questions (tasks have been assigned) by August 15th
 - Add review of current limits
 - maybe discussion of long-lived issues too
 - Try to have first draft by September

Closing Remarks

- Good progress from last year
- Some of the same issues remain
 - Classification/parameterisation/comparison
 - Tools
- Small sessions conducive to discussion, but perhaps this one was too small? More theorists? More active experimentalists?
 - LHC experiments will have analyses this coming year to add to the experiences
 - Some lepton-jets are almost as much normal jets as lepton jets, could benefit from cross-pollination with hadronic working group

Thanks to Muge & Boost 2010 team for organising a productive workshop ...

Looking forward to Boost 2011!