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Introduction

2 motivations for boosted studies:

Something heavy (e.g. Z ′) decays to something light

(t/W /Z/H/ . . .), which is then naturally boosted

A new light particle (H/χ0/ . . .) emerges more clearly

above backgrounds in the small fraction of events where
it’s produced boosted

√
sLHC ≫ mEW makes both of these relevant
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Introduction Different facets

Boosted decays

1 →
2 (H/W/Z)
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3 (top)
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4 (buried H)
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Introduction

Basics
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Introduction Boosted massive particles, e.g.: EW bosons

Hadronically decaying EW boson at high pt 6= two jets

single
jet

z

(1−z)

boosted X
R &

m

pt

1
√

z(1− z)

Rules of thumb: m = 100 GeV, pt = 500 GeV

◮ R <
2m

pt
: always resolve two jets R < 0.4

◮ R &
3m

pt
: resolve one jet in 75% of cases (18 < z < 7

8) R & 0.6
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Introduction Jet mass
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QCD Jet Mass Distribution

Herwig 6.5 + Jimmy

pt,gen > 1 TeV

C/A alg, R=0.5
FastJet 2.4

pp, 14 TeV

For boosted heavy object, obvi-
ous thing to tag on is the jet
mass.

But QCD jets also have masses
→ large backgrounds, sometimes
peaked in same mass region as
signal.

So how can do we do better?
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Introduction 3 principles can help us

◮ Heavy-object decays share energy symmetrically, QCD background
events with same mass share energy asymmetrically

Measuring energy-sharing inside jet gives clue as to origin

◮ QCD radiation from a colour-neutral heavy-object decay is limited
by angular ordering Tells us where to “look for the right mass”

Radiation outside that region may hint that jet is background

◮ QCD radiation from Higgs decay products is point-like, noise (UE,
pileup) is diffuse Helps us get the right mass
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Introduction QCD principle: soft divergence

Signal Background

z

(1−z)

boosted X
z

quark

(1−z)

Splitting probability for Higgs:

P(z) ∝ 1

Splitting probability for quark:

P(z) ∝ 1 + z2

1− z

1/(1− z) divergence enhances background

Remove divergence in bkdg with cut on z

Can choose cut analytically so as to maximise S/
√
B

Originally: cut on (related) kt-distance

Butterworth, Cox & Forshaw ’02
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Higgs

Higgs searches
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Higgs H → bb̄ boosted search channel at LHC

◮ Hint of H → bb̄ in SUSY searches Butterworth, Ellis & Raklev ’07

◮ Proposal that boosted regime recovers WH & ZH channels at LHC
Butterworth, Davison, Rubin & GPS ’08

◮ Confirmation that this works with realistic detector simulation
ATLAS ’09

◮ Proposal that boosted H recovers ttH channel
Plehn, GPS & Spannowsky ’09

◮ Possibility of H → bb̄ discovery in SUSY events
Kribs, Martin, Roy & Spannowsky ’09–’10

◮ Optimising H → bb̄ significance over bkdg by combining filtering /
pruning / trimming Soper & Spannowsky ’10
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Higgs Early declustering methods

Use kt jet-algorithm’s hierarchy to
split the jets

Use kt alg.’s distance measure (rel.
trans. mom.) to cut out QCD bkgd:

dkt
ij = min(p2ti , p

2
tj )∆R2

ij

Y-splitter only partially
correlated with mass
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Higgs The Cambridge/Aachen algorithm

The Cambridge/Aachen jet alg. Dokshitzer et al ’97

Wengler & Wobisch ’98

Work out ∆R2
ij = ∆y2ij +∆φ2

ij between all pairs of objects i , j ;
Recombine the closest pair;

Repeat until all objects separated by ∆Rij > R. [in FastJet]

Gives “hierarchical” view of the event; work through it backwards to analyse jet
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Higgs The Cambridge/Aachen algorithm

The Cambridge/Aachen jet alg. Dokshitzer et al ’97

Wengler & Wobisch ’98

Work out ∆R2
ij = ∆y2ij +∆φ2

ij between all pairs of objects i , j ;
Recombine the closest pair;

Repeat until all objects separated by ∆Rij > R. [in FastJet]

Gives “hierarchical” view of the event; work through it backwards to analyse jet

kt algorithm Cam/Aachen algorithm

Allows you to “dial” the correct R to

keep perturbative radiation, but throw out UE
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Higgs pp → ZH → νν̄bb̄, @14TeV, mH=115GeV

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

Cluster event, C/A, R=1.2

SIGNAL

Zbb BACKGROUND

arbitrary norm.
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Higgs pp → ZH → νν̄bb̄, @14TeV, mH=115GeV

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

Fill it in, → show jets more clearly

SIGNAL

Zbb BACKGROUND

arbitrary norm.
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Higgs pp → ZH → νν̄bb̄, @14TeV, mH=115GeV

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

Consider hardest jet, m = 150 GeV

SIGNAL
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Higgs pp → ZH → νν̄bb̄, @14TeV, mH=115GeV

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

split: m = 150 GeV, max(m1,m2)
m

= 0.92 → repeat
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Higgs pp → ZH → νν̄bb̄, @14TeV, mH=115GeV

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

split: m = 139 GeV, max(m1,m2)
m

= 0.37 → mass drop
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Higgs pp → ZH → νν̄bb̄, @14TeV, mH=115GeV

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

check: y12 ≃ pt2
pt1

≃ 0.7 → OK + 2 b-tags (anti-QCD)

SIGNAL
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arbitrary norm.

Principle #1:

Signal splittings more syummetric than bkgd
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Higgs pp → ZH → νν̄bb̄, @14TeV, mH=115GeV

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

check: y12 ≃ pt2
pt1

≃ 0.7 → OK + 2 b-tags (anti-QCD)
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200 < ptZ < 250 GeV

arbitrary norm.

Principle #1:

Signal splittings more syummetric than bkgd

Principle #2:

Radiation from bb̄ contained
in 2 cones of size Rbb.
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Higgs pp → ZH → νν̄bb̄, @14TeV, mH=115GeV

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

check: y12 ≃ pt2
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Higgs pp → ZH → νν̄bb̄, @14TeV, mH=115GeV

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

Rfilt = 0.3
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Higgs pp → ZH → νν̄bb̄, @14TeV, mH=115GeV

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

Rfilt = 0.3: take 3 hardest, m = 117 GeV

SIGNAL

 0

 0.05

 0.1

 0.15

 80  100  120  140  160
mH [GeV]

200 < ptZ < 250 GeV

Zbb BACKGROUND

 0

 0.002

 0.004

 0.006

 0.008

 80  100  120  140  160
mH [GeV]

200 < ptZ < 250 GeV

arbitrary norm.



Jet substructure review (p. 13)

Higgs pp → ZH → νν̄bb̄, @14TeV, mH=115GeV

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

Rfilt = 0.3: take 3 hardest, m = 117 GeV

SIGNAL
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Zbb BACKGROUND
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arbitrary norm.

Principle #3:

Perturbative radiation from H → bb̄ more
“pointlike” than underlying event & pileup
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Higgs

Filtering/Pruning/Trimming
Noise removal

UE adds Λ ≃ 10− 15 GeV of noise per unit rapidity. For a jet of size R ,
effect on jet mass goes as

〈δm2〉 ≃ Λpt
R4

4
∼ 4Λ

m4

p3t

Dasgupta, Magnea

& GPS ’07

Filtering, Pruning & Trimming are all intended to reduce this noise.
Viewing the jet on some smaller scale Rsub, throw out softest subjets:

◮ Filtering: break jet into subjets on angular scale Rfilt , take nfilt hardest
subjets Butterworth, Davison, Rubin & GPS ’08

◮ Trimming: break jet into subjets on angular scale Rtrim, take all subjets
with pt,sub > ǫtrimpt,jet Krohn, Thaler & Wang ’09

◮ Pruning: as you build up the jet, if the two subjets about to be
recombined have ∆R > Rprune and min(pt1, pt2) < ǫprune (pt1 + pt2),
discard the softer one. Ellis, Vermilion & Walsh ’09
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effect on jet mass goes as
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Filtering, Pruning & Trimming are all intended to reduce this noise.
Viewing the jet on some smaller scale Rsub, throw out softest subjets:

◮ Filtering: break jet into subjets on angular scale Rfilt , take nfilt hardest
subjets Butterworth, Davison, Rubin & GPS ’08

◮ Trimming: break jet into subjets on angular scale Rtrim, take all subjets
with pt,sub > ǫtrimpt,jet Krohn, Thaler & Wang ’09

◮ Pruning: as you build up the jet, if the two subjets about to be
recombined have ∆R > Rprune and min(pt1, pt2) < ǫprune (pt1 + pt2),
discard the softer one. Ellis, Vermilion & Walsh ’09

These techniques matter most for moderate pt objects

(And also for high-mass resonances → jets)
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Higgs

Filtering/Pruning/Trimming
Optimising “jet cleaning”

Analytically optimize filtering as a function of pt , amount of pileup, etc.

Put together QCD resummations, modelling of UE/PU, understanding of
jet areas, etc. Rubin ’10

Also Soyez ’10 for choice of jet radius

Best Rfilt/Rbb vs. ptH
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Higgs

Filtering/Pruning/Trimming
Combining tools on ZH events

Filtering, Pruning, Trimming: do they all do the same thing?
Soper & Spannowsky ’10

Signal masses more strongly correlated between different methods than are
background masses. Helps reject background more effectively / increase
significance.

But not clear what physics is driving this?
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Higgs

Buried
“Buried Higgs”: H → 2η → 4g

mη . 10 GeV < 2mb implies η → 2g
Bellazzini, Csáki, Falkowski & Weiler ’09

Very difficult to observe at LHC (or Tevatron?) with usual methods.

Two groups have tackled this with “boosted” methods:
Chen, Nojiri & Sreethawong ’10

Falkowski et al ’10

◮ Even for Higgs at rest, η is produced boosted

◮ η is colour-neutral; using a veto on radiation in its neighbourhood helps
kill backgrounds (and it’s rare for a jet to be so light)

Related “superstructure” ideas used in other contexts by

Gallicchio & Schwartz ’09; Almeida et al ’10
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Higgs

Buried
H → 2η → 4g results

WH

Chen, Nojiri & Sreethawong ’10
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Falkowski et al ’10

mη = 8 GeV in both cases
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Top

Top
Many new-physics models involve signals of high-pt tops

(KK resonance→ tt̄, t̃¯̃t → tt̄+MET, etc.)

Compared to W/H/Z, two extra handles to tag on:

3-body decay structure

Presence of W mass among subjets
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Top Tagging boosted top-quarks

Many papers on top tagging in ’08-’10: jet mass + something extra.

Questions

◮ What efficiency for tagging top?
◮ What rate of fake tags for normal jets?

Rough results for top quark with pt ∼ 1 TeV
“Extra” eff. fake

[from T&W] just jet mass 50% 10%
Brooijmans ’08 3,4 kt subjets, dcut 45% 5%
Thaler & Wang ’08 2,3 kt subjets, zcut + various 40% 5%
Kaplan et al. ’08 3,4 C/A subjets, zcut + θh 40% 1%
Ellis et al. ’09 C/A pruning 10% 0.05%
ATLAS ’09 3,4 kt subjets, dcut MC likelihood 90% 15%
Chekanov & P. ’10 Jet shapes 60% 10%
Almeida et al. ’08–’10 Template + shapes 13% 0.02%
Plehn et al. ’09–’10 C/A MD, θh/Dalitz [busy evs, pt ∼ 300] 35% 2%
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Top New top developments 2010

New ways of pulling out the W

Together with filtering for low-pt top

Plehn et al ’10

Template methods
Almeida et al. ’10

Build catalog of all possible par-
tonic top-decay configurations.

Look to see if there’s a template
that gives a good match to the
current event. That tells you if
you’ve tagged a top.

Underlying similarlity to cut-based
methods? Angular limits placed on
the “acceptable” templates.
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Top Measuring efficiencies

Efficiencies / fake-rates depend a lot on how you measure them.
Numbers quoted before taken/deduced straight from papers

Take example of Johns Hopkins (JH) top tagger
Kaplan, Rehermann, Schwartz & Tweedie ’08

Generate Herwig 6.5 & Pythia 6.4 samples with pt,top > 1 TeV. Use JH
tagger with fixed R = 0.5. Look at hardest jet.

Efficiencies Fake Rates
mass cuts HW 6.5 PY 6.4 HW 6.5 PY 6.4

145<mt <205, 65<mW <95 40% 40% 1.2% 0.6%

160<mt <190, 73<mW <89 30% 30% 0.4% 0.2%
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Top Measuring efficiencies

Efficiencies / fake-rates depend a lot on how you measure them.
Numbers quoted before taken/deduced straight from papers

Take example of Johns Hopkins (JH) top tagger
Kaplan, Rehermann, Schwartz & Tweedie ’08

Generate Herwig 6.5 & Pythia 6.4 samples with pt,top > 1 TeV. Use JH
tagger with fixed R = 0.5. Look at hardest jet.

Efficiencies Fake Rates
mass cuts HW 6.5 PY 6.4 HW 6.5 PY 6.4

145<mt <205, 65<mW <95 40% 40% 1.2% 0.6%

160<mt <190, 73<mW <89 30% 30% 0.4% 0.2%

NB: could use recent NLO W+3jet results to get non-MC numbers

What’s a reasonable mass range?

Which MC is closer to the truth?
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Top Fake rate beyond MC

Two non-MC ways to determine true fake rates:

◮ Experimentally: to know what will happen for 1 TeV jets at LHC14,
examine LHC7 data for 500 GeV jets (σ ∼ 50 pb−1) with all dimensionful
cuts in the top-taggers scaled by factor 1

2 .
Scale down cuts even further to increase cross-section

◮ From QCD: run top-tagger on hadronic side of high-pt NLO W+3jet
events Could use BlackHat and/or Rocket programs
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Top

Outlook
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Outlook Conclusions/Outlook

The subject has seen a high level of activity in the past two years.

Boosted objects will undoubtedly be part of the scene for LHC searches.
Anytime you do a search you should keep an eye on substructure

Open questions?

◮ Mostly, so far, developments have been based on a mixture of inspiration
and trial+error. Can we give our methods a more quantitative
foundation? Will this be of concrete benefit?

E.g. flat backgrounds of χ0 search in Butterworth et al. ’09

◮ There’s still wok to be done in comparing tools (quoted numbers not
always comparable) Public code for all tools would help

◮ Coming year offers much promise for first studies with early data. Studies
need to be formulated so that data tells us both about efficiencies and
fake rates.
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Extras

Extras
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Extras

Neutralino search
R-parity violating SUSY

As an example, a search for neutralinos in R-parity violating supersymmetry.

Normal SPS1A type SUSY scenario, except that neutralino is not LSP, but
instead decays, χ̃0

1 → qqq.
Jet combinatorics makes this a tough channel for discovery

◮ Produce pairs of squarks, mq̃ ∼ 500 GeV.

◮ Each squark decays to quark + neutralino,
mχ̃0

1
∼ 100 GeV

◮ Neutralino is somewhat boosted → jet
with substructure

Butterworth, Ellis, Raklev & GPS ’09
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Extras

Neutralino search
Analytics (back-of-the-enveolope)

Subjet decomposition procedures are not just trial and error.

Mass distribution for undecomposed jet:

1

N

dN

dm
∼ 2Cαs lnRpt/m

m
e−Cαs ln2 Rpt/m+···

Strongly shaped, with Sudakov peak, etc.

Mass distribution for hardest (largest Jade distance) substructure within
C/A jet that satisfies a symmetry cut (z > zmin):

1

N

dN

dm
∼ C ′αs(m)

m
e−C ′αs lnRpt/m+···

∼ C ′αs(Rpt)

m

[
1 + (2b0 − C ′)

︸ ︷︷ ︸

partial cancellation

αs lnRpt/m +O
(
α2
s ln

2
)]

Procedure gives nearly flat distribution in mdN/dm

Neutralino procedure involves 2 hard substructures, but ideas are similar



Jet substructure review (p. 29)

Extras

Neutralino search
RPV SUSY, SPS1a, 1 fb−1 [14 TeV]
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Herwig 6.5 + Jimmy 4.3

Cam/Aachen R=0.7
pt1 > 500 GeV

signal + background

background (just dijets)

signal

Keep it simple:

Look at mass of leading jet

◮ Plot m
100 GeV

dN
dm

for hardest jet
(pt > 500 GeV)

◮ Require 3-pronged substructure

◮ And third jet

◮ And fourth central jet
99% background rejection

scale-invariant procedure

so remaining bkgd is flat

Once you’ve found neutralino:

◮ Look at m14 using events with
m1 in neutralino peak and in
sidebands

Out comes the squark!
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Extras

Neutralino search
RPV SUSY, SPS1a, 1 fb−1 [14 TeV]
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Once you’ve found neutralino:

◮ Look at m14 using events with
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Out comes the squark!
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Extras

Neutralino search
RPV SUSY, SPS1a, 1 fb−1 [14 TeV]
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◮ Require 3-pronged substructure

◮ And third jet

◮ And fourth central jet
99% background rejection

scale-invariant procedure

so remaining bkgd is flat

Once you’ve found neutralino:

◮ Look at m14 using events with
m1 in neutralino peak and in
sidebands

Out comes the squark!
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RPV SUSY, SPS1a, 1 fb−1 [14 TeV]
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Keep it simple:

Look at mass of leading jet

◮ Plot m
100 GeV

dN
dm

for hardest jet
(pt > 500 GeV)

◮ Require 3-pronged substructure

◮ And third central jet

◮ And fourth central jet
99% background rejection

scale-invariant procedure

so remaining bkgd is flat

Once you’ve found neutralino:

◮ Look at m14 using events with
m1 in neutralino peak and in
sidebands

Out comes the squark!
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