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Outline

Brief overview of the Tevatron and CDF and DØ detectors

What’s left for new physics at the Tevatron?

Boosted searches at the Tevatron

SUSY + dark photons

Higgs ➝ aa ➝ µµ + µµ(ττ)

NLLP ➝ bb

Brief comment on boosted tops

Summary & Outlook
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Fermilab Tevatron Collider

proton-antiproton 
collisions @ √s = 1.96 TeV
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Fermilab Tevatron Collider

DØ

CDF
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CDF and DØ Detectors

 Highlights
  δMtop / Mtop  < 1%
  single top discovery
  Bs - Bs oscillations
  W mass
  WZ and ZZ discovery
  Higgs exclusion ( 162 < MH < 166 GeV )
  Many more...
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Data Collection

Tevatron running very well.
Delivered nearly 9 fb-1. 
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Data Collection

Tevatron running very well.
Delivered nearly 9 fb-1. 

On good days each 
experiment collects 

10 pb-1!
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New Physics Searches
Few hints of new TeV-scale physics at the Tevatron

Nothing in Squark/gluino searches, SLPIT SUSY, 
EW sector (diboson cross sections, aTGC),  
FCNC in top decays, 
W’ and Z’ searches, etc...

Exciting new results in BS system, 
small b’ and t’ excess.

Most analyses completed with 
1 fb-1 to 5 fb-1 datasets.

If we haven’t seen anything 
with 5 fb-1, is a 3σ observation 
likely with 10 fb-1?

With limited resources what is the best way to analyze Tevatron data with 
10 fb-1? Basically, how can we compete with the LHC even at √s = 7 TeV?
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New Physics Searches cont.

Build upon many years of detector understanding and don’t compete 
with LHC on high √s searches.

e.g. LHC discovery potential for W’➝lv will bypass Tevatron with O(10 pb-1).

Compete with LHC on systematics-limited searches.

e.g. Higgs searches require serious understanding of backgrounds.

Also, start re-analyzing data for new signatures we might have missed.

This talk presents three analyzes we’ve published this past year on 
new physics searches.
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Searches w/ Boosted Objects

1). SUSY production w/ 
“dark” sector decays

2). Light psuedoscalar 
production in Higgs decays. 

3). Highly displaced vertices 
from NLLP decays.
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Figure 2: A possible Higgs decay through mixing [5].

striking experimental signature; highly displaced secondary vertices with a large number of30

attached tracks from the b-quark decays. If the SM hypothesis is correct and the Higgs has

a mass of mH = 120 − 200 GeV, then the Tevatron has already produced 2000-4000 Higgs

bosons. Therefore, if any of these Higgs decay via a hidden-valley sector, the signature may

be distinct enough to have discovery potential with data that has already been collected

making a hidden-valley analysis especially exciting.35

Experimental constraints from LEP1 set an upper bound on the branching fraction of

10−7
for the process Z → UŪ via Z−Z �

mixing [6]. Cosmological constraints only require the

existence of one light HV hadron with a lifetime � 1 second in order to preserve big-bang

nucleosynthesis [4]. Therefore, the only considerations limiting the reach of this analysis

are experimental ones: the Tevatron is only capable of producing relatively light SM Higgs40

bosons and the size of the tracking portion of the DØ detector determines the maximum

observable v-hadron decay length
1
. The referenced hidden-valley models make no specific

v-hadron mass or lifetime predictions and there is no HV model which is clearly more likely,

however the simplest models predict mHV in the range 20 ∼ 40 GeV.

2 Overview of the Analysis Procedure45

The signal for this analysis consists of one or more neutral particles decaying to two b-jets as

illustrated in figure 3. Since multijet events comprise an enormous, irreducible background, it

is necessary to search for events containing highly displaced vertices. Secondary-vertices (SV)

are reconstructed by the tracking portion of the detector, which effectively limits the analysis

to v-hadron decays occurring within the tracker volume, corresponding to a maximum radius50

of 50 cm. In practice the maximum allowed radius is tightened; this is a fiducial volume cut

because tracks are need to reconstruct SVs which requires enough CFT layers for particles

1Our analysis method requires events that are fully contained. A different analysis using the muon system

and missing energy could look for v-particles with a longer decay length. Such an analysis was proposed by

the authors but will be left for future studies.
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SUSY + Dark Sector Search
Exciting results from recent
measurements of high energy positron
energy spectrum.

No excess of antiprotons...

High energy excess can be explained if
we suppose a new weakly coupled (to SM) sector with gauge boson 
mass scaled of order 1 GeV.

Boson mass explains excess in positrons and not protons.

Further referred to as dark sector.

Also dark LSP (darkino) is the true LSP since Mdark ~ MeV.

Can we see these relatively low mass states in collider searches?
9

M(χdark) < M(χ0)~ ~

http://arxiv.org/abs/0810.5344v3

http://arxiv.org/abs/0810.4995v1
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“Dark” Collider Signature 

One mechanism is SUSY chargino production with cascade decays down to a 
two neutralino final state.

Remember that 

Neutralino will decay to true LSP (darkino)
in addition to a SM photon or 
dark photon (      )γD

~ ~B(χ0
1 → γDχ)

B ∼ 1

B ∼ 0

Signature depends on neutrino branching ratio: 

If             then signature is two high pT photons + large missing ET.

If             then signature is two boosted lepton pairs with M(ll) ~ GeV and large missing ET.

10

M(χdark) < M(χ0)
~ ~

The dark photon will mix (             )
with SM photon                  and decay to 
highly boosted lepton pairs (                ).

Boosted because Mχ ∼ 100×MγD

γD → γSM
γ → �+�−

� < 10−3
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Lepton-jet Event Selection

Require ≥1 photon with pT > 30 GeV 
and missing ET ( from undetected    ) > 20 GeV.

Trigger on hard photon.

11

χ

Wednesday, June 23, 2010



Lepton-jet Event Selection

Require ≥1 photon with pT > 30 GeV 
and missing ET ( from undetected    ) > 20 GeV.

Trigger on hard photon.

Dark photon reconstruction:

Start with spatially close and 
oppositely charged tracks.

Track-pair should be isolated (<2 GeV)

Track-pair should be separated from photon

tracktrack
missing E

T

p
h

o
to

n
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Lepton-jet Event Selection

Require ≥1 photon with pT > 30 GeV 
and missing ET ( from undetected    ) > 20 GeV.

Trigger on hard photon.

Dark photon reconstruction:

Start with spatially close and 
oppositely charged tracks.

Track-pair should be isolated (<2 GeV)

Track-pair should be separated from photon

tracktrack
missing E

T

p
h

o
to

n

11

χ

For dielectron decay, match tracks to EM cluster.

For dimuon decay, match at least one track to isolated muon

tracktrack

EM or M
uon
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Backgrounds & Result
Background dominated by multijet events with mismeasured missing ET and photon 
conversions faking lepton pairs.

Model background using low missing ET sample (negligible signal).
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Backgrounds & Result
Background dominated by multijet events with mismeasured missing ET and photon 
conversions faking lepton pairs.

Model background using low missing ET sample (negligible signal).
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No excess of data seen in 
either electron or muon samples.
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Backgrounds & Result
Background dominated by multijet events with mismeasured missing ET and photon 
conversions faking lepton pairs.

Model background using low missing ET sample (negligible signal).
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Searches w/ Boosted Objects

1). SUSY production w/ 
“dark” sector decays

2). Light psuedoscalar 
production in Higgs decays. 

3). Highly displaced vertices 
from NLLP decays.
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Figure 2: A possible Higgs decay through mixing [5].

striking experimental signature; highly displaced secondary vertices with a large number of30

attached tracks from the b-quark decays. If the SM hypothesis is correct and the Higgs has

a mass of mH = 120 − 200 GeV, then the Tevatron has already produced 2000-4000 Higgs

bosons. Therefore, if any of these Higgs decay via a hidden-valley sector, the signature may

be distinct enough to have discovery potential with data that has already been collected

making a hidden-valley analysis especially exciting.35

Experimental constraints from LEP1 set an upper bound on the branching fraction of

10−7
for the process Z → UŪ via Z−Z �

mixing [6]. Cosmological constraints only require the

existence of one light HV hadron with a lifetime � 1 second in order to preserve big-bang

nucleosynthesis [4]. Therefore, the only considerations limiting the reach of this analysis

are experimental ones: the Tevatron is only capable of producing relatively light SM Higgs40

bosons and the size of the tracking portion of the DØ detector determines the maximum

observable v-hadron decay length
1
. The referenced hidden-valley models make no specific

v-hadron mass or lifetime predictions and there is no HV model which is clearly more likely,

however the simplest models predict mHV in the range 20 ∼ 40 GeV.

2 Overview of the Analysis Procedure45

The signal for this analysis consists of one or more neutral particles decaying to two b-jets as

illustrated in figure 3. Since multijet events comprise an enormous, irreducible background, it

is necessary to search for events containing highly displaced vertices. Secondary-vertices (SV)

are reconstructed by the tracking portion of the detector, which effectively limits the analysis

to v-hadron decays occurring within the tracker volume, corresponding to a maximum radius50

of 50 cm. In practice the maximum allowed radius is tightened; this is a fiducial volume cut

because tracks are need to reconstruct SVs which requires enough CFT layers for particles

1Our analysis method requires events that are fully contained. A different analysis using the muon system

and missing energy could look for v-particles with a longer decay length. Such an analysis was proposed by

the authors but will be left for future studies.
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Higgs ➝ aa Search

Current Higgs exclusion limits based on
Higgs ➝ bb decays assumed Br(H➝bb).

Many reasons to move beyond SM Higgs picture

e.g. fine tuning to solve hierarchy problem.

One way to keep Higgs light is the NMSSM with the price that we must 
augmented particle content.

NMSSM dramatically changes Higgs branching 
ratio due to H ➝ aa decays 
(BR ~ 90%) ⇒ Evades LEP ZH limits.

Recent activity in this area by ALEPH collaboration.

14

http://arxiv.org/abs/1003.0705v2
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Properties of New Pseudoscalar
Pseudoscalar mass (    ) is unconstrained.

It will decay to heaviest available fermion pairs.

e.g.                                           or 

If                       then expect highly
collinear muon pairs back-to-back inϕ

Start search with a decays to dimuons assuming

MH � Ma

ET scale: 3 GeV

Run 2555 Evt 5 09-Apr-2008

H➝aa➝μμμμ

Cuts:

Do not explicitly require 4 muons in the event.

Require ≥2 muons w/ pT > 10 GeV and M(µ,µ) > 15 GeV.

Each muon must have a nearby track with pT > 4 GeV

Muon + track candidates must be isolated from other tracks 
and calorimeter energy deposits.

15

a < 2mτ ⇒ a → µµ 2mτ < a < 2mb ⇒ a → ττ

ma < 2mτ

ma
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Background Modeling
Monte Carlo + GEANT simulation not expected to match data in this phase space. 

QCD Multijets dominate backgrounds.

Create multijet-enriched sample by 
reversing muon-track calorimeter 
ET cut to model background shape.

Z/γ* ➝ µµ + tracks contribute
and modeled with Monte Carlo.

Signal acceptance determined from
Monte Carlo.

Uncertainty on signal acceptance studied
in                   decays as a function of ΔR(π,π)

Data / MC correction within 20% and rises to 50% for ΔR < 0.02

Dominant systematic on background due to limited statistics in multijet sample. (50%).
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Results for Higgs ➝ aa ➝ µµµµ
Look for excess of events in ±2σ mass window around assumed ma.

17
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Results for Higgs ➝ aa ➝ µµµµ
Look for excess of events in ±2σ mass window around assumed ma.
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Extending Mass Reach
If                       then a will prefer to decay to tau pairs.

4-tau final state is experimentally challenging.

No resonance peak, tau reconstruction efficiency is low, triggering is difficult.

2-muon + 2-tau final state easier in many ways

Use muons for triggering, still some resonance peaks

18

ma > 2mτ
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Extending Mass Reach
If                       then a will prefer to decay to tau pairs.

4-tau final state is experimentally challenging.

No resonance peak, tau reconstruction efficiency is low, triggering is difficult.

2-muon + 2-tau final state easier in many ways

Use muons for triggering, still some resonance peaks

18

ma > 2mτ

ET scale: 9 GeV

Run 2994 Evt 4690 19-Nov-2008

muons

taus

missing ET

Taus are not explicitly reconstructed, 
but inferred by large missing ET 
created by tau decays.

Monte Carlo simulation of 

Tau reconstructed based on 3 categories
(leptonic decay, 1-prong, and 3-prong decays)

Background modeled by reversing tau cuts.

H → aa → µµττ
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Results for Higgs ➝ aa

As before, mass windows (Ma ± 2σ)
used to determine signal, background, 
and data yields.

Observed data agrees
with background prediction

Limits determined versus
Higgs mass and a mass. 

Start to exclude
some part of

phase space.
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Searches w/ Boosted Objects

1). O(GeV) dark photon 
decays to fermion pairs.

2). O(GeV) a pair 
production and decays to 

4 muons or 2 muon + 2 taus.

3). NLLP decaying to bb 
pairs (Hidden valley)
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Figure 2: A possible Higgs decay through mixing [5].

striking experimental signature; highly displaced secondary vertices with a large number of30

attached tracks from the b-quark decays. If the SM hypothesis is correct and the Higgs has

a mass of mH = 120 − 200 GeV, then the Tevatron has already produced 2000-4000 Higgs

bosons. Therefore, if any of these Higgs decay via a hidden-valley sector, the signature may

be distinct enough to have discovery potential with data that has already been collected

making a hidden-valley analysis especially exciting.35

Experimental constraints from LEP1 set an upper bound on the branching fraction of

10−7
for the process Z → UŪ via Z−Z �

mixing [6]. Cosmological constraints only require the

existence of one light HV hadron with a lifetime � 1 second in order to preserve big-bang

nucleosynthesis [4]. Therefore, the only considerations limiting the reach of this analysis

are experimental ones: the Tevatron is only capable of producing relatively light SM Higgs40

bosons and the size of the tracking portion of the DØ detector determines the maximum

observable v-hadron decay length
1
. The referenced hidden-valley models make no specific

v-hadron mass or lifetime predictions and there is no HV model which is clearly more likely,

however the simplest models predict mHV in the range 20 ∼ 40 GeV.

2 Overview of the Analysis Procedure45

The signal for this analysis consists of one or more neutral particles decaying to two b-jets as

illustrated in figure 3. Since multijet events comprise an enormous, irreducible background, it

is necessary to search for events containing highly displaced vertices. Secondary-vertices (SV)

are reconstructed by the tracking portion of the detector, which effectively limits the analysis

to v-hadron decays occurring within the tracker volume, corresponding to a maximum radius50

of 50 cm. In practice the maximum allowed radius is tightened; this is a fiducial volume cut

because tracks are need to reconstruct SVs which requires enough CFT layers for particles

1Our analysis method requires events that are fully contained. A different analysis using the muon system

and missing energy could look for v-particles with a longer decay length. Such an analysis was proposed by

the authors but will be left for future studies.
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Hidden Valley Models

Similar to SUSY + dark photon search, introduce a hidden sector that
is weakly coupled to the standard model.

Hidden sector may have complex structure.

All HV particles decay to HV pions (          ).

          will decay back to SM particles
through SM-HV communicators (     ).

Because                        decay vertex can
be highly displaced from the IP.

πHV

Z �
πHV

MZ� � MπHV
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Figure 2: A possible Higgs decay through mixing [5].

striking experimental signature; highly displaced secondary vertices with a large number of30

attached tracks from the b-quark decays. If the SM hypothesis is correct and the Higgs has

a mass of mH = 120 − 200 GeV, then the Tevatron has already produced 2000-4000 Higgs

bosons. Therefore, if any of these Higgs decay via a hidden-valley sector, the signature may

be distinct enough to have discovery potential with data that has already been collected

making a hidden-valley analysis especially exciting.35

Experimental constraints from LEP1 set an upper bound on the branching fraction of

10−7
for the process Z → UŪ via Z−Z �

mixing [6]. Cosmological constraints only require the

existence of one light HV hadron with a lifetime � 1 second in order to preserve big-bang

nucleosynthesis [4]. Therefore, the only considerations limiting the reach of this analysis

are experimental ones: the Tevatron is only capable of producing relatively light SM Higgs40

bosons and the size of the tracking portion of the DØ detector determines the maximum

observable v-hadron decay length
1
. The referenced hidden-valley models make no specific

v-hadron mass or lifetime predictions and there is no HV model which is clearly more likely,

however the simplest models predict mHV in the range 20 ∼ 40 GeV.

2 Overview of the Analysis Procedure45

The signal for this analysis consists of one or more neutral particles decaying to two b-jets as

illustrated in figure 3. Since multijet events comprise an enormous, irreducible background, it

is necessary to search for events containing highly displaced vertices. Secondary-vertices (SV)

are reconstructed by the tracking portion of the detector, which effectively limits the analysis

to v-hadron decays occurring within the tracker volume, corresponding to a maximum radius50

of 50 cm. In practice the maximum allowed radius is tightened; this is a fiducial volume cut

because tracks are need to reconstruct SVs which requires enough CFT layers for particles

1Our analysis method requires events that are fully contained. A different analysis using the muon system

and missing energy could look for v-particles with a longer decay length. Such an analysis was proposed by

the authors but will be left for future studies.
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hCollider signature.

Highly displaced vertices with large
track multiplicities (2Bs).
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NLLP Event Selection

Triggering on these events is difficult.

Can not use dijet triggers due to overwhelming QCD rate.

Require one muon from semileptonic B decay.

More sophisticated trigger strategy is 
clear improvement for this analysis.

Common background is nuclear
interactions with detector material.

Signal is also displaced vertex with
large charged particle multiplicity.

B → µ+X

IP

Inner 
tracking 
detector

Material
interation

22
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NLLP Event Selection

Triggering on these events is difficult.

Can not use dijet triggers due to overwhelming QCD rate.

Require one muon from semileptonic B decay.

More sophisticated trigger strategy is 
clear improvement for this analysis.

Common background is nuclear
interactions with detector material.

Signal is also displaced vertex with
large charged particle multiplicity.

B → µ+X

IP

Inner 
tracking 
detector

Material
interation

Create material map using 
data and remove dense regions.

X [cm]

Y
 [

cm
]
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Hidden Valley Analysis
After removing material regions, backgrounds mostly QCD dijet production 
with real or fake muon.

Background dominated data control sample not available due to signal contamination.

Model backgrounds with dijet Monte Carlo and reweight to data in regions 
with low signal fraction.

Background Monte Carlo statistics are dominant systematic uncertainty.

Signal modeled with Pythia                                      + GEANT simulationgg → H → aa → bb̄bb̄

a ⇔ πHV

23
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Hidden Valley Analysis
After removing material regions, backgrounds mostly QCD dijet production 
with real or fake muon.

Background dominated data control sample not available due to signal contamination.

Model backgrounds with dijet Monte Carlo and reweight to data in regions 
with low signal fraction.

Background Monte Carlo statistics are dominant systematic uncertainty.

Signal modeled with Pythia                                      + GEANT simulation

PV

SV

direction
of flight

vector sum
of track momentum θMH � MπHV

MH ≈ 1

2
MπHV

Signal selection cuts depend on model parameters.

If                        then      will be highly boosted, 
use cos(θ) as signal:background discriminator.

If                        then      tracks form large angles, 
use displaced vertex mass as signal:background discriminator.

bb̄

bb̄

gg → H → aa → bb̄bb̄

a ⇔ πHV
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NLLP Results
Maximize sensitivity (                 ) on Monte Carlo before opening the box.S/

√
S +B

24
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NLLP Results
Maximize sensitivity (                 ) on Monte Carlo before opening the box.S/
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Hidden Valley Limits
8 points in the 3D space of [                              ].
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High PT top 

Both experiments have large ttbar samples in the lepton+jets channel.

CDF has dedicated ttbar resonance search.

Unfortunately most of them are produced with little boost with current dataset.

May not have enough events to study boosted tops even with the fully expected dataset.
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Summary & Outlook

Tevatron is performing extremely well with 
nearly 9 fb-1 delivered to both experiments.

Most Tevatron Boosted searches 
focus on lepton-jets signals

Boosted tops (w/ high statistics) unlikely for Tevatron.

Additional searches not mentioned:

Jet substructure measurement from CDF soon (ICHEP abstract).

Updated lepton-jets result from DØ (maybe tomorrow?).

By end of 2010, both experiments can expect to analyze ~ 10 fb-1.

Tevatron still producing exciting results and if we’re lucky we still might 
find new physics before LHC.
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SUSY/Dark Photon Limits
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Hadronic W and Z Decays

Both CDF and D0 see WW+WZ in the lepton+MET+jets channels.

W+jets a major background with large systematics.

Both experiments use multivariate techniques to enhance signal 
fraction.

CDF also see hadronically 
decaying W/Z in MET+jj channel.
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Recent ALEPH H -> aa
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