# **CMS Status and First Results**

Dave Newbold (University of Bristol) on behalf of the CMS Collaboration

- CMS detector
- Commissioning
- Detector performance
- First QCD results
- First electroweak data
- Prospects for 2010 -11



BOOST2010 Workshop, June 2010

#### The CMS Detector





CMS Status and First Results – BOOST2010



## CMS in February 2007







#### **CMS** Data-Taking Periods



#### • Cosmics runs:

- MTCC '06: 25M cosmic muons
- CRAFT '08: 470M cosmic muons
- CRAFT '09: 300M cosmic muons
- Detailed detector studies during commissioning
  - Operation of all data-taking systems (trigger, DAQ, computing)

#### Collision runs:

- $\sqrt{s} = 900 \text{GeV}$  (LHC injection energy): 300k events -
  - Delivered / recorded: 15µb<sup>-1</sup> / 10µb<sup>-1</sup>
  - First LHC collision run, many lessons learnt about detector operations and performance
  - First physics papers based on this data
- $\sqrt{s} = 2.36$ TeV: 20k events
  - Delivered / recorded: 1.2µb<sup>-1</sup> / 0.4µb<sup>-1</sup>
  - Short run, paving the way to real high-energy operation
- $\sqrt{s} = 7$ TeV: "LHC Run 1"
  - ▶ Running since 30th march 2010, ~20nb<sup>-1</sup> delivered so far









#### **CRAFT - Cosmic Runs at Four Tesla**





CMS Status and First Results – BOOST2010

University of BRISTOL

#### **CRAFT** Achievements







- TeV muons without LHC
  - Most precise measurement of charge ratio over wide p range
  - Submitted to PLB

#### Field map fully understood

Extrapolate tracks, tracker to muon chambers
 -> field known to 0.1% within solenoid

#### Tracker alignment

 Alignment precision matches that originally expected for ~10pb<sup>-1</sup>

#### In good shape for physics runs



#### LHC Luminosity Profile for 7TeV



Delivered by LHC: 20.5nb<sup>-1</sup>; collected by CMS: 18.7nb<sup>-1</sup>

Data taking efficiency: 91%; high quality data for 90% of runs

**CMS: Integrated Luminosity 2010** 



CMS 7TeV data sample to date: 17nb<sup>-1</sup>



# **CMS** Operating Efficiency





|         | MUON-<br>CSC | MUON-<br>DT | MUON-<br>RPC | HCAL<br>BARREL | HCAL<br>ENDCAP | FORWAR<br>D | ECAL<br>BARREL | ECAL<br>END-<br>CAP | PRE-<br>SHOWER | TRACKE<br>R | TRACKE<br>R |  |
|---------|--------------|-------------|--------------|----------------|----------------|-------------|----------------|---------------------|----------------|-------------|-------------|--|
| Series1 | 98.5         | 99.8        | 98.8         | 99.9           | 100            | 99.9        | 99.3           | 98.9                | 99.8           | 98.1        | 98.2        |  |

All subsystems >98% functional – CMS is operating efficiently





# Triggering at Low Luminosity





- Minbias offline selection
  - BSC (OR of 2 planes) + good vertex,  $\varepsilon \sim 90\%$
  - HF (E > 3GeV both sides):  $\varepsilon \sim 90\%$



# Trigger Commissioning





- High-level trigger in 'mark and pass' mode for MB running
  - Allows validation of first low threshold muon / calo trigger paths
  - Higher lumi trigger performance can later be estimated in the same way



#### **DAQ & Offline Performance**

- Excellent efficiency from HLT, DAQ
  - ▶ HLT compute farm ~2% loaded
  - Can cope with ~100ms/evt load
  - Currently predict <40ms/evt for  $\mathcal{L}=10^{30}$
- Computing system
  - Data processing proceeds smoothly
  - Many reprocessing cycles complete at T1
  - >60 centres (T1 & T2) participating
  - ▶ ~500 users submitting jobs for analysis







# **Tracking Performance**





## **Tracking Performance**









# **Tracking Performance**





- Tracking performance validated
  - Momentum scale, alignment, primary / secondary vertex ID
  - Simulation of material distribution being fine-tuned



dE/dx Estimator [MeV/cm]

# b-Tagging





#### Example double b-jet candidate

b-tagging currently being commissioned



#### **ECAL Cluster-Level Performance**





- Distributions for highest cluster in ECAL barrel
  - Good agreement with MC; performance well understood
  - Note that CMS ECAL was not be re-calibrated during CRAFT



#### **YY** Resonances



Only around 10% of stats in these plots; useful tool for intercalibration of ECAL





#### **Recovered Photons**





- Pi-0 mass plot with one leg reconstructed as a conversion
  - Tracker and ECAL are working well together essential for efficiency in γ channels



#### Jets



University of BRISTOL



## Jet Spectrum for Different Reco



Figure: Data vs MC: Di jet mass  $m_{i1,i2}$  for Cale jets, PFjets.

- Three jet reconstruction methods
  - Calo jets / 'Jet plus track' / Full particle flow
  - Particle flow takes advantage of full detector granularity & relative strengths
  - Already showing good consistency with MC & promising performance



OHIVEISIUV O

BRISTOL

# Missing Et





- This is a dijet sample
  - Since ~no true MET, can examine tails
- Good agreement with simulation
  - Five orders of magnitude range
  - Tails still under study work in progress
  - MET measurement is crucial to many early searches; under intensive development





#### **Muon Performance**







#### J/ψ Observation



- 'Tag and probe' technique
  - Can be used to estimate lepton efficiencies (and fake rates)
  - Low mass resonances constrain muon momentum scale
  - Challenging analysis at low masses





University of BRISTOL

# **CMS** Physics Goals



|                             | Integrated L                                 | SM Object                                                                                                                |  | SM Use                                                                                             | Search Strategy                                              |  |  |
|-----------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--|--|
|                             | mb <sup>-1</sup> ( 1)                        | UE, MB                                                                                                                   |  | Tune MC                                                                                            |                                                              |  |  |
|                             | ub <sup>-1</sup> (10 <sup>3</sup> )          | Jets,<br>Heavy flavor                                                                                                    |  | Align. dE/dx<br>Calib, trigger valid, MET<br>c, b tag<br>leptons                                   |                                                              |  |  |
| are here ->                 | nb <sup>-1</sup> (10 <sup>6</sup> )          | W<br>Z                                                                                                                   |  | Cross section, charge<br>Mass scale, resolution                                                    |                                                              |  |  |
| are nere >                  | 1 pb <sup>-1</sup> (10 <sup>9</sup> )        | Top pairs                                                                                                                |  | Leptons + J + true MET                                                                             | Black holes                                                  |  |  |
|                             | 10 pb <sup>-1</sup>                          |                                                                                                                          |  |                                                                                                    | Dijet M > 2 TeV<br>HSCP, leptoquarks                         |  |  |
|                             | 100 pb <sup>-1</sup> (2010)                  |                                                                                                                          |  |                                                                                                    | M > TeV W' , Z'<br>New range for SUSY                        |  |  |
| Model of Integrated Luminos | 1000 pb <sup>-1</sup> (2011)<br>sity @ 7 TeV |                                                                                                                          |  |                                                                                                    | SUSY – TeV mass<br>scale<br>Higgs @ 95% CL,<br>(140,190) GeV |  |  |
| ender<br>Andrease           |                                              | <ul> <li>→ Model 2010</li> <li>→ Model 2011</li> <li>→ MPP / JW</li> <li>→ Simple Exp</li> <li>→ Simple Table</li> </ul> |  | At ~20nb <sup>-1</sup> , expect:<br>• 100 W -> $\mu$ / e<br>• 10 Z -> $\mu\mu$ / ee<br>• 1 ttbar ? |                                                              |  |  |

We are

24

10000.00

1000.00

100.00

10.00

1.00

0.10

0.01 +

0

2

4

6

8

12

10

time (months)

16

14

18

20

22

Integ lumi (/pb)



## **QCD: Charged Particle Distributions**



- Two publications on charged particle distribution in minbias
  - 900GeV paper published last year
  - ▶ 7TeV paper accepted for PRL start of June
  - Both analyses use three methods of estimation for cross-checking
- Tuning of MC generators is under way
  - Rise of particle density at 7TeV is steeper than predicted by generators



### **QCD: Bose-Einstein Correlations**



Measure correlation between identical bosons

$$R = \frac{P(p1, p2)}{P(p1)P(p2)} = \frac{dN / dQ}{dN / dQ_{ref}} \qquad Q = \sqrt{m_{\pi\pi}^2 - 4m_{\pi}^2}$$

- Use several reference samples for normalisation
  - Dilute the correlation via opposite charge pairs; rotated events; mixed events; opposite hemisphere pairs

#### Results

- Clear evidence of BEC observed
- May obtain the effective size of the emission source:
- $r = 1.59 \pm 0.05_{stat} \pm 0.19_{sys}$  (900 GeV)
- $r = 1.99 \pm 0.18_{stat} \pm 0.24_{sys}$  (2.36 TeV)
  - These results use several different reference samples combined
- Available as arXiv:1005.3294v1



University of BRISTOL

# W→µv



Event selection: *Muon id cuts (global and tracker muons), Isolation, pT cut and MET* Monte Carlo : *Cross section normalized to 16 nb*<sup>-1</sup> *integrated luminosity* 





57 Candidates with  $M_t > 50 GeV$ 

Dave.Newbold@cern.ch





37 Candidates

with  $M_t > 50 \text{GeV}$ 





CMS Status and First Results – BOOST2010

# Z→µµ



Event selection : muon id selection (global and tracker muons); loose Isolation, pT cut. Monte Carlo : cross section normalized to



University of BRISTOL

#### Z→ee



GeV/c<sup>2</sup> 10<sup>2</sup> ⊧ CMS Preliminary 2010 Event selection: both electrons with a 🔶 Data SuperCluster with Et > 20 GeV  $\sqrt{s}$  = 7 TeV L<sub>int</sub> = 0.0166 pb<sup>-1</sup> Monte Carlo : cross section normalized 10 W+Jets to 17 nb<sup>-1</sup> integrated luminosity Events / 3.0 QCD & y + Jets  $Z \rightarrow \tau \tau$  $Z \rightarrow ee$ 10 10<sup>-2</sup> CMS Experiment at LHC, CERN  $\mathbb{C}M$ Run 133877, Event 28405693 Lumi section: 387 Sat Apr 24 2010, 14:00:54 CEST 10<sup>-3</sup> Electrons  $p_T = 34.0, 31.9 \text{ GeV/c}$ Inv. mass =  $91.2 \text{ GeV/c}^2$ 10<sup>-4</sup> 120 160 60 100 140 180 200 20 40 80 0  $M_{ee}$  [GeV/c<sup>2</sup>] 5 Candidates



#### Prospects: 10pb<sup>-1</sup>





Monte Carlo

M3 = highest invariant mass combination of three jets from the event

Top physics will soon become accessible

- Autumn 2010?
- Completes 'rediscovery' of the standard model
- Commission top-tagging procedures at CMS



# Prospects for 100pb<sup>-1</sup>



#### Prospects for Ifb<sup>-1</sup>





SM Higgs exclusion, 1fb<sup>-1</sup>

SUSY Higgs exclusion, 1fb<sup>-1</sup>

- Completion of the standard model (or alternative)
  - Current LHC planning has 1fb<sup>-1</sup> reached by December 2011
  - It will be an interesting 18 months ahead

# Summary



- CMS is operational for physics
  - Commissioning phases with cosmics and beam were successful
  - All components performing incredibly well, and with high efficiency
  - Turnaround of commissioning and physics analyses is extremely rapid

#### Current status

- Taking data at  $\sqrt{s} = 7$ TeV with exponentially increasing luminosity
- Papers already published on first measurements, more to come soon
- First W and Z candidates have been observed

#### ▶ Plans for 2010 – 11

- Clear prospects for exciting physics very soon
- Many new results will be announced this summer
- 'Rediscovery' of the standard model in 2010
- Possibility of new physics in 2011
- Stay tuned: things are moving fast!

