Technicolor and Beyond

Francesco Sannino

CP³ - Origins

Particle Physics & Origin of Mass

23 April 2010 @ Boost - Oxford

FS: 0911.0931

Natural Dark Matter

Electroweak Baryogenesis

Low Energy Theory

Energy

Λ

SM

SM - cartoon

Technicolor - cartoon

QCD-like TC

New Strong Interactions at ~ 250 GeV [Weinberg, Susskind]

Natural to use QCD-like dynamics.

$$SU(N)_{TC} \times SU(3)_C \times SU_L(2) \times U_Y(1)$$

$$\langle Q^f \widetilde{Q}_{f'} \rangle = \Lambda_{TC}^3 \qquad \qquad \Lambda_{TC} \simeq 1 \text{ TeV}$$

Precision EW Data

Large & Positive S from QCD-like Technicolor

Peskin and Takeuchi, 90

Kennedy-Lynn, Peskin-Takeuchi, Altarelli-Barbieri, Bertolini- Sirlin, Marciano-Rosner

SM Fermion Masses

Extending Technicolor

$$\bar{L} \cdot He_R \longrightarrow \bar{L} \frac{QQ}{\Lambda_{ETC}^2} e_R$$

Different Approaches

Scalar-less New Gauge Interactions (Extended TC)

Marry SUSY and Technicolor

Add New Scalars in the Flavor Sector

.

Extended Technicolor

Novel type of dynamics

Near Conformal

Mass enhancement

$$\left\langle \bar{Q}Q_{ETC} \right\rangle = \exp \left(\int_{\Lambda_{TC}}^{\Lambda_{ETC}} d\ln(\mu) \, \gamma_m(\alpha(\mu)) \right) \left\langle \bar{Q}Q_{TC} \right\rangle$$

QCD-Like

$$\exp\left(\int_{\Lambda_{TC}}^{\Lambda_{ETC}} d\ln(\mu) \, \gamma_m(\alpha(\mu))\right) \sim \left(\ln(\Lambda_{ETC}/\Lambda_{TC})\right)^{\gamma_m}$$

Near the conformal window

$$\exp\left(\int_{\Lambda_{TC}}^{\Lambda_{ETC}} d\ln(\mu) \, \gamma_m(\alpha(\mu))\right) \sim \left(\left(\Lambda_{ETC}/\Lambda_{TC}\right)^{\gamma_m(\alpha^*)}\right)$$

Fermion Mass Enhancement

$$m_{\rm f} \approx \frac{g_{ETC}^2}{\Lambda_{ETC}^2} < \bar{Q}Q >_{ETC} = \frac{g_{ETC}^2}{\Lambda_{ETC}^2} \left(\frac{\Lambda_{ETC}}{\Lambda_{TC}}\right)^{\gamma_m(\alpha^*)} < \bar{Q}Q >_{TC}$$

Need large anomalous dimension, around $\gamma_m(\alpha^*) \sim 1.7$

S-parameter

$$S_{WTC} < S_{TC}$$

Appelquist, F.S. 98

Da Silva, Duan, F.S. 99

How low can S be?

$$S \ge \frac{1}{6\pi} \frac{N_f}{2} d(R)$$

Strong constraint

Conjecture obtained comparing exact results with QCD

In fact ...

$$S = S_{(W)TC} + S_{NS}$$

Offset the first term

Rule:

Find WT minimizing the lower bound for S

Gauge Theory Knobs

Gauge Group, i.e. SU, SO, SP

Matter Representation

of Flavors per Representation

SU(N) Phase Diagram

Minimal models of Technicolor

FS, Tuominen 04

Dietrich, FS, Tuominen 05

Minimal WT

Next to MWT

$$SU(3)_{TC} \square \square$$

FS, Tuominen 04

Dietrich, FS, Tuominen 05

Orthogonal

$$SO(4)_{TC} \square U$$

Frandsen, FS 09

•Ultra MT

$$SU(2)_{TC}$$
 \square $\begin{array}{c} \mathbf{U} \\ \mathbf{D} \end{array}$

Ryttov, FS 08

Other models/ETC

Farhi and Susskind 79; Eichten and Lane 89; Appelquist and Terning 94; Appelquist, Christensen, Pia and Shrock 04 Evans and FS 08 Ryttov and Shrock 09,10

• Effective Theories

Appelquist, Da Silva, FS 99; Da Silva, Duan, F.S. 99 Foadi, Frandsen, Ryttov, F.S. 07 Lane and Martin 09

Minimal Walking Technicolor

F.S. + Tuominen 04 Dietrich, F.S., Tuominen 05

Extra

Extra

Electron

Neutrino

U and D: Adj of SU(2)

MVT Features

- ** The most economical WT theory
- Compatible with precision measurements
- Possible DM candidates and Unification
- Can support 1st order Electroweak Phase Transition
- Can feature a light composite Higgs Dietrich, F.S., Tuominen 05.
 Da Silva, Doff, Natale 08, 09.
- Lattice studies have begun

MVT Effective Lagrangian

$$\mathcal{L}(Composites) + \mathcal{L}(Mixing with SM) + \mathcal{L}(New Leptons) + \mathcal{L}(SM - Higgs)$$

Initial investigation we include:

Composite Higgs

 \mathbb{H}

Composite Axial - Vector States

 $R_{1,2}$

See Frandsen talk for the (boosted) phenomenology

Many Models

Unification in Model Space

MSSM - cartoon

Super Technicolor

From MWT to N=4

MWT

Minimal S-partners

N=1 Multiplets

N=4

 G_{μ}

 $egin{aligned} G_{\mu} \ ar{D}_{R} \end{aligned}$

V

V

 \bar{D}_R

 Φ_3

 \bar{U}_R

 Φ_3

 U_L

 Φ_1

 D_L

 $\overline{D_L}$ $ilde{ ilde{D}_L}$

 Φ_2

 Φ_2

N=4 - SU(N) requires

$$P = -\frac{g}{3\sqrt{2}} \epsilon_{ijk} f^{abc} \Phi_i^a \Phi_j^b \Phi_k^c, \ i = 1, 2, 3; a = 1, \dots, N^2 - 1$$

Antola, Di Chiara, FS, Tuominen 10

... and now

- N=4 breaks to N=1 via electroweak interactions
- * Add MSSM superpotential and SUSY breaking

Minimal Super Conformal Technicolor

Conclusions

- DEWSB can naturally occur at the LHC
- Phase Diagram of strongly interacting theories
- Minimal models of technicolor
- Unification in theory space/Technicolor meets string theory
- DEWSB cosmology is exciting... another time