

Boosting SUSY

Are R. Raklev

Content

- Hadronic objects.
 - Boosted massive SM particles from SUSY decays.
 - SUSY resonances.
- Leptonic & mixed objects.

Boosted SM particles from SUSY decays

- R-parity no SUSY resonance decays to SM particles.
- Produce massive SM particles (W,Z,h,t) in SUSY decays.
 - Potentially with large boost due to SUSY mass differences.
- Work on some topics started:
 - SUSY cascade decays.

- Potential for MSSM Higgs discovery in SUSY events.
 [Kribs, Martin, Roy, Spannowsky, arXiv:0912.4731,1006.1656]
- Reconstructing top from stop decays
 [Plehn, Spannowsky, Takeuchi, Zerwas, arXiv:1006.2833]

SUSY cascade decays

 We know how to do long cascade decays with «clean» leptons at the LHC using edge measurements, e.g.

$$\tilde{q}_L \rightarrow q \tilde{\chi}_2^0 \rightarrow q l^{\pm} \tilde{l}^{\mp} \rightarrow q l^{\pm} l^{\mp} \tilde{\chi}_1^0$$

What about gaugino decays to SM bosons in SUSY?

$$ilde{\chi}_{1}^{\pm}
ightarrow W^{\pm} ilde{\chi}_{1}^{0}, \quad ilde{\chi}_{2}^{0}
ightarrow Z ilde{\chi}_{1}^{0}, \quad ilde{\chi}_{2}^{0}
ightarrow h ilde{\chi}_{1}^{0}$$

The only decay that works well with leptons is $Z \to l^+ \ l^-$ What about $W \to q \, q'$ or $h \to b \, \overline{b}$?

SUSY cascade decays

Edge measurements can be used as in «standard» decay chains, taking care to include SM masses:

SUSY cascade decays

Edge measurements can be used as in «standard» decay chains, taking care to include SM masses:

$$(m_{qZ}^{\rm ext})^2 = m_Z^2 + \frac{\left(m_{\tilde{q}_L}^2 - m_{\tilde{\chi}_2^0}^2\right)}{m_{\tilde{\chi}_2^0}} (E_Z \pm p_Z)$$

$$p_Z^2 = \frac{(m_{\tilde{\chi}_2^0}^2 - m_{\tilde{\chi}_1^0}^2 - m_Z^2)^2 - 4m_Z^2 m_{\tilde{\chi}_1^0}^2}{4m_{\tilde{\chi}_1^0}^2}$$

Cascade decays: but why do we care?

Illustration of CMSSM/mSUGRA for generic values of

 A_0 , tan β , sgn μ

Very limited production of massive SM bosons (W,Z,h) in DM allowed regions.

Small relaxation of unification assumptions can give larger BRs.

[Battaglia et al., hep-ph/0106204]

 $m_{1/2}$

23/06/10

/ Are R. Raklev / BOOST 2010

7/365

Cascade decays: but why do we care?

Non-Universal Higgs Mass (NUHM) and Gravitino Dark Matter (GDM) scenarios change DM allowed regions.

Point/BR	$\tilde{\chi}_2^0 \to \tilde{\chi}_1^0 Z$	$\tilde{\chi}_2^0 \to \tilde{\chi}_1^0 h$	$\tilde{\chi}_1^{\pm} \to \tilde{\chi}_1^0 W^{\pm}$
α	98.6	0.0	99.6
eta	7.5	64.5	79.0
γ	0.0	0.0	99.9
δ	5.4	92.0	97.5

[De Roeck et al., hep-ph/0508198]

Cascade decays: but why do we care? χ_2 Branching Fraction

Non-Universal Higgs Mass (NUHM) and Gravitino Dark Matter (GDM) scenarios change DM allowed regions.

Point/BR	$\tilde{\chi}_2^0 \to \tilde{\chi}_1^0 Z$	$\tilde{\chi}_2^0 ightarrow \tilde{\chi}_1^0 h$	$\tilde{\chi}_1^{\pm} \to \tilde{\chi}_1^0 W^{\pm}$
α	98.6	0.0	99.6
eta	7.5	64.5	79.0
γ	0.0	0.0	99.9
δ	5.4	92.0	97.5

[De Roeck et al., hep-ph/0508198]

Aside: finding the MSSM Higgs(es)

Small µ leads to

$$\tilde{W}$$
 , $\tilde{B} \rightarrow h$ / A / $H + \tilde{H}$

Plot shown for:

$$m_{\tilde{q}} = 1 \text{ TeV}$$
 $m_{\tilde{l}} = 500 \text{ GeV}$
 $|\mu| = 150 \text{ GeV}$
 $M_2 = 2 M_1$

Large BR $(h, A, H \rightarrow b\overline{b})$ generic in the MSSM. For analysis details & results, see talk by Martin.

[Kribs, Martin, Roy, Spannowsky, arXiv:0912.4731,1006.1656]

Cascade decays: a whole lotta hadrons

MC study using ALPGEN/Herwig6.510/JIMMY for multiple jet backgrounds.

Looking for Ws in

$$ilde{q}_L
ightarrow q' ilde{\chi}_1^{\pm}
ightarrow q' W^{\pm} ilde{\chi}_1^{0}$$

with di-jet invariant mass after 300 GeV cut on ETmiss.

Cascade decays: with di-jet substructure

SM rejection cuts:

$$p_T^{\text{jet}} \ge 200, 200, 150 \text{ GeV}$$

$$E_T^{\rm miss} \ge 300 {\rm GeV}$$

W candidate jet cuts:

$$75 \text{ GeV} < m_i < 105 \text{ GeV}$$

$$1.5 < \log_{10}(\sqrt{d_{kl}^{(1)}}) < 1.9$$

kT distance

Cascade decays: top quarks from stops

Potential large cross section for

$$pp \rightarrow \tilde{t}_1 \tilde{t}_1^* \rightarrow t \, \overline{t} \, \tilde{\chi}_1^0 \tilde{\chi}_1^0$$

given $m_{\tilde{t}_1} > m_t + m_{\tilde{\chi}_1^0}$ or even

$$pp o ilde{g} \, ilde{g} o t \, \overline{t} \, ilde{t}_1 ilde{t}_1^*, t \, t \, ilde{t}_1^* ilde{t}_1^*, \overline{t} \, \overline{t}_1^*$$

Accurate reconstruction of top momentum of vital importance.

For analysis details & results, see talk by Takeuchi.

[Plehn, Spannowsky, Takeuchi, Zerwas, arXiv:1006.2833]

RPV decays of **SUSY** resonances

• With R-parity violation the (N)LSP can decay promptly into 2-4 quarks ($10^{-6} < \lambda < 10^{-2}$) via

$$W_{\mathrm{RPV}} \sim \lambda_{ijk}^{'} L_{i} Q_{j} \bar{D}_{k} + \lambda_{ijk}^{''} \bar{U}_{i} \bar{D}_{j} \bar{D}_{k}$$

- The decay $\tilde{\chi}_1^0 \to qqq$ is notoriously difficult to reconstruct unless there are heavy flavours present.
- 20 possible combinations for 6 jets!
- Marginally doable if additional leptons are present in the decay chain, but this is model dependent!

[Allanach et al., hep-ph/0102173]

RPV decays: attempt with kT algorithm

Define a substructure y-cut that is not so mass-scale dependent:

$$y_1 = \min(p_{Tk}^2, p_{Tl}^2) / m_j^2 \times \Delta R_{kl}^2$$

Analysis requires two **neutralino candidate** jets. Clear resonance peak on exponential background.

ATLAS full detector simulation with $k_{\scriptscriptstyle T}$ algorithm @ 10 TeV encouraging.

[Butterworth, Ellis, ARR, Salam, arXiv:0906.0728] [French et al., ATL-PHYS-PUB-2009-076]

RPV decays: now with C/A algorithm

With Cambridge/Aachen there is no p_{T} ordering of clusters. We pick significant clusterings by requiring:

$$z_{kl} = \frac{\min(p_{Tk}, p_{Tl})}{p_{Tk} + p_{Tl}} > z_{cut}$$

One can show that for QCD jets, when $\epsilon < m_j < Rp_T z_{\rm cut}^{1/2}$,

$$m_j \frac{dn}{dm_j} \propto \frac{2C_F}{\pi} \left(\ln \frac{1}{z_{cut}} - \frac{3}{4} \right)$$

Order such clusterings by JADE distance $d_{kl} = p_{Tk} p_{Tl} \Delta R_{kl}^2$.

[Butterworth, Ellis, ARR, Salam, arXiv:0906.0728]

RPV decays: now with C/A algorithm

Inclusive analysis picking one very hard jet with two mergers that have $z_{cut} > 0.15$.

Require the two mergers to have a significant mass ratio $\mu > 0.25$.

Combining neutralino candidate with extra hard jet gives squark mass estimate.

[Butterworth, Ellis, ARR, Salam, arXiv:0906.0728]

Lepton jets

- SUSY with benefits
 - Non-minimal field content: extra U(1)'s & more complicated stuff.
 - NMSSM singlino: $\tilde{\chi}_{2}^{0} \rightarrow l^{+}l^{-}\tilde{S}$
 - GeV scale Dark Higgses and Dark gauge bosons:

$$\tilde{\chi}_{ ext{MSSM}} o h_{ ext{dark}} / \gamma_{ ext{dark}} + \tilde{\chi}_{ ext{dark}}$$

[Arkani-Hamed, Weiner, arXiv:0810.0714]

 For more Dark Details, see Jay Wacker's talk later today.

Lepton jets & mixed

• With R-parity violation the (N)LSP can decay promptly into 2-4 leptons ($10^{-6} < \lambda < 10^{-2}$) via

$$W_{\text{RPV}} \sim \lambda_{ijk} L_i L_j \overline{E}_k$$

• Expect neutrinos due to SU(2) structure.

NLSP	$LLar{E}$	$LQar{D}$	$ar{U}ar{D}ar{D}$
$ ilde{\chi}^0_1$	$\ell_i^{\pm}\ell_j^{\mp} u$	$q_j ar q_k \ell^\pm (q_j ar q_k u)$	$q_iq_jq_k(ar{q}_iar{q}_jar{q}_k)$
$\tilde{\nu}$	$\ell_i^{\pm}\ell_j^{\mp}$	$q_jar{q}_k$	
	$\ell_i^{\pm}\ell_j^{\mp} u u$	$q_j ar q_k \ell^\pm u (q_j ar q_k u u)$	$ u q_i q_j q_k (u ar{q}_i ar{q}_j ar{q}_k)$
$ ilde{ au}_R$	$\ell_i u$	$q_jar{q}_k$	
	$\ell_i^{\pm}\ell_j^{\mp} u au$	$q_j ar q_k \ell^\pm au(q_j ar q_k u au)$	$ au q_i q_j q_k (au ar{q}_i ar{q}_j ar{q}_k)$

Lepton-jet mixture quite generic with RPV.

[Bomark, Lola, Osland, ARR, arXiv:0811.2969]

Conclusions

- R-parity conservation prevents massive SUSY resonances decaying exclusively to hadron or lepton jets.
- Use of boosted techniques important for reconstructing massive SM particles in SUSY cascade decays.
 - Possible Higgs discovery channels.
- In RPV scenarios SUSY resonances can be reconstructed
 - Watch out for inducing signal shapes in backgrounds.
 - Clever use of algorithms & cuts gives predictable background behaviour.

Back-ups

Are MC generator jets realistic?

Jet shape:

[CDF, hep-ex/0505013]

Subjet separation scale

Detector resolution

[ATLAS, arXiv:0901.0512]

Using di-jets

[ATLAS, arXiv:0901.0512]

Cascade decays: SM backgrounds

Sample	$N_{ m generated}$	\mathcal{L} [fb ⁻¹]	$N_{\rm pass}(\alpha - \gamma)$	$N_{\mathrm{pass}}(\delta)$					
$t\bar{t}$			256.7	1287.0	Wjj	157,800	114.5	49.2	450.5
50-150	26,500,000	93.0			Zjj	112,000	99.9	43.9	417.7
150-250	10,000,000	95.6			Wjjj	50,300	227.9	127.8	1109.4
250-400	3,500,000	120.0			Zjjj	27,300	156.6	194.4	1782.9
400-600	500,000	129.6			WW/WZ/ZZ			9.6	95.3
600-	500,000	902.4			50-150	100,000	1.8		
W_j			5.2	34.5	150-250	100,000	29.2		
50-150	1,100,000	0.1			250-400	100,000	158.2		
150-250	1,100,000	2.9			400-600	100,000	945.2		
250-400	1,100,000	20.2			600-	10,000	437.0		
400-600	1,100,000	154.3			WWj	201,200	100.7	9.8	98.3
600-	600,000	507.2			WZj	162,400	90.2	0.0	0.0
Zj			3.2	3.0	ZZj	69,500	426.5	2.3	17.6
50-150	100,000	0.0			WWjj	107,300	98.7	23.4	215.8
150-250	100,000	0.6			WZjj	179,000	248.4	55.2	455.5
250-400	100,000	4.3			ZZjj	18,900	167.0	5.9	59.3
400-600	100,000	32.7							

100,000

600 -

199.7

Cascade decays: finding edges

Subtract backgrounds using sidebands. Fit to Gaussian smeared edge.

Cascade decays: mass results

Using both decay chains

$$\tilde{q}_L \rightarrow q' \tilde{\chi}_1^{\pm} \rightarrow q' W^{\pm} \tilde{\chi}_1^{0}$$

$$\tilde{q}_L \rightarrow q \, \tilde{\chi}_2^0 \rightarrow q \, Z \, \tilde{\chi}_1^0$$

we get strong correlations between masses from measuring edges.

Error bands from 1σ statistical errors on edge determination.

Nominal LSP mass

RPV decays: the classic literature

Require two leptons with $p_{_{\rm T}} > 15$ GeV.

[Allanach et al., hep-ph/0102173]

RPV decays: attempt with k_T algorithm

[Butterworth, Ellis, ARR, Salam, arXiv:0906.0728]

RPV decays: attempt with k₊ algorithm

Problem: y₁-cut suppresses background, but shapes it to look like signal.

$$y_1 = \min(p_{Tk}^2, p_{Tl}^2)/p_T^2 \times \Delta R_{kl}^2/R^2$$

Some help in lowering R. However, you start to loose signal when

$$R < \frac{2m_j}{p_T}$$

[Butterworth, Ellis, ARR, Salam, arXiv:0906.0728]

RPV decays: overall performance

Mass determination seems limited by ATLAS/CMS jet mass resolution (~8 GeV).

Combining neutralino candidate with extra hard jet gives squark mass estimate.

[Butterworth, Ellis, ARR, Salam, arXiv:0906.0728]

ATLAS full detector simulation with $k_{\scriptscriptstyle T}$ algorithm encouraging.

[French et al., ATL-COM-PHYS-2009-272]

RPV decays: full simulation in ATLAS

Full detector simulation on identical benchmark points with k_{τ} algorithm encouraging.

Large error bars on QCD background, but this will not be a problem with data (see small error bars for indication).

[French et al., ATL-COM-PHYS-2009-272]

[CDF Collaboration, arXiv:0812.4036]

Finding gluinos with k₊ algorithm

[ARR, Salam, Wacker, arXiv:1005.1229]