## Jet Grooming



Brock Tweedie
Johns Hopkins University
23 June 2010

#### Outline

- Growing jets
- Grooming jets

# Growing Jets

# Sequential Algorithms

- Cambridge/Aachen
- kT
- Anti-kT

 Sequentially sum up nearestneighbor 4-vectors in the η-φ plane until all 4-vectors are distanced by more than a prespecified R















#### **kT**

- C/A-like, with R-parameter
- Nontrivial distance measure between 4vectors...sensitive to energy
- "Beam distance" criterion for jet formation

#### kT

$$D_{ij} = min(p_{Ti}, p_{Tj}) * \Delta R_{ij}$$

$$D_{iB} = p_{Ti} * R$$

$$Defined for pairs of 4-vectors$$

$$Defined for individual 4-vectors$$

- Add D-closest pairs of 4-vectors unless a D<sub>iB</sub> is smallest
- If D<sub>iB</sub> is smallest, promote i to a jet, pluck it from the list, and continue clustering what remains









$$D_{ij} = min(1/p_{Ti}, 1/p_{Tj}) * \Delta R_{ij}$$
$$D_{iB} = (1/p_{Ti}) * R$$

 Same as kT, but measure now prioritizes clustering with hard 4-vectors















## Catchment Area Comparison







Anti-kT



kΤ

# Grooming Jets

#### WW in Idealization



#### WW in Idealization



Discriminators against QCD:

- 1. Jet mass ~ m<sub>W</sub>
- 2.  $k_T/z/\cos\theta^*/\Delta R/...$

# WW in Reality



# WW in Reality



### W-Jets with YSplitter

 $p_{TW} = 300 \sim 500 \text{ GeV}$ 



W fat-jet mass

W fat-jet kT scale

### Simple Fix #1: Shrinking Fat-Jets



 $R_{fat} \sim \# / p_{TW}$ 

## Seems to Work Okay...



 $p_{TW} = [400,500]$ 

C/A jets

#### Why Don't We Just Do This?

- Introduction of user-defined mass scale...have to know what you're looking for!
- Not obvious that this gets always gets rid of all of the junk
  - Intermediate-boost regime (Higgsstrahlung)
  - 3+ body decays spread out more irregularly
- Fails to constrain substructure beyond 2-body, but we could continue investigating the distribution of jet constituents afterwards

### Simple Fix #2: Shrinking Thin-Jets



 $R_{thin} \sim \# / p_{TW}$ 

#### Degraded Signal Peak vs Bump-on-a-Bump

Intermediately-boosted Higgs from Higgsstrahlung





 $R = 0.5 \, C/A$ 

## More Refined Strategies

- Filtering
- Pruning
- Trimming

## Filtering Advertisement



R = 0.5 C/A



**BDRS** filtering

#### Filtering: A Top-Down View

Fat-jet clustered with C/A



## Filtering: A Top-Down View

Fat-jet clustered with C/A



p<sub>⊤</sub> range of interest

#### Hard Measures

- Original BDRS: fractional drop in mass, and energy asymmetry between split clusters
  - Scale-invariant -> no mass features sculpted into backgrounds
- JHU Top-tag: energy relative to original fat-jet, and ∆R between clusters

## Filtering Advantages

- Ditches large-angle soft junk automatically
- Adaptively determines appropriate ∆R scales for clustering substructures
- Easy to define scale-invariant hardness measures
- Can be easily extended to flexible searches for arbitrary multiplicities of substructures
  - Top-jets
  - Neutralino-jets
  - Boosted Higgs in busy environment (SUSY, tth)

#### Pruning: A Bottom-Up View



## Pruning: A Bottom-Up View

- "hard" merge
- "soft" merge



## Pruning: A Bottom-Up View

- "hard" merge
- "soft" merge



#### Nominal Pruning Parameters

 Merging 4-vectors cannot simultaneously be too asymmetric and too far apart..."hard" merging means:

$$- Min(p_{T1}, p_{T2})/(p_{T1}+p_{T2}) > z_{cut}$$
OR

$$-\Delta R_{12} < D_{cut} \sim m_{fat}/p_{Tfat}$$

#### Case Study: Boosted Top Mass



#### Detailed Substructure is "Trivial"



<sup>\*</sup> However, tied to this specific (local) definition of "hard"

# Trimming

1. Recluster fat-jet constituents into *very* thin jets



## Trimming

1. Recluster fat-jet constituents into *very* thin jets



2. Throw away thinjets that are too soft

## Case Study: Dijet Resonance



R = 1.5 anti-kT, reclustered with R = 0.2

Throw away if  $p_T \sim < (1\%) p_{Tfat}$ 

# Boosting Discovery from Combining Algorithms?



#### Summary: Growing

 We know how to make jets in ways that either organize substructure or form nice circles in a trustable way

#### Summary: Grooming

- Interesting jets are full of junk as well as substructure
  - Mass resolution degrades
- Simple-minded workarounds tend to get us into trouble or are non-optimal
- Variety of more sophisticated procedures are now on the market...all with similar names!

#### Summary: Grooming

#### Filtering

 Trace back through a fat-jet's clustering history, find "hard" splits (discarding "soft" splits), maybe recluster with refined R using this info

#### Pruning

 Redo clustering of a fat-jet's constituents, vetoing mergings that are too far AND too asymmetric

#### Trimming

 Recluster fat-jet with tiny R and throw away thin-jets that are too soft

#### Summary: Grooming

- Not much systematic comparison (still)
  - But see Soper & Spannowsky