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Basic idea of subjet analysis
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Confirmed by ATLAS analysis with only slightly smaller significance
[ATL-PHYS-PUB-2009-088, G. Piacquadio]

Result for ZH and WH combined:

3

on mass resolution and background rejection.

The above results were obtained with HER-
WIG 6.510[17, 18] with Jimmy 4.31 [19] for the under-
yling event, which has been used throughout the sub-
sequent analysis. The signal reconstruction was also
cross-checked using Pythia 6.403[20]. In both cases
the underlying event model was chosen in line with the
tunes currently used by ATLAS and CMS (see for ex-
ample [21] 2). The leading-logarithmic parton shower
approximation used in these programs have been shown
to model jet substructure well in a wide variety of pro-
cesses [23, 24, 25, 26, 27, 28]. For this analysis, sig-
nal samples of WH, ZH were generated, as well as
WW, ZW, ZZ, Z + jet, W + jet, tt̄, single top and dijets
to study backgrounds. All samples correspond to a lu-
minosity ≥ 30 fb−1, except for the lowest p̂min

T dijet sam-
ple, where the cross section makes this impractical. In
this case an assumption was made that the selection ef-
ficiency of a leptonically-decaying boson factorises from
the hadronic Higgs selection. This assumption was tested
and is a good approximation in the signal region of the
mass plot, though correlations are significant at lower
masses.

The leading order (LO) estimates of the cross-section
were checked by comparing to next-to-leading order
(NLO) results. High-pT V H and V bb̄ cross sections were
obtained with MCFM [29, 30] and found to be about 1.5
times the LO values for the two signal and the Z0bb̄ chan-
nels (confirmed with MC@NLO v3.3 for the signal [31]),
while the W±bb̄ channel has a K-factor closer to 2.5 (as
observed also at low-pT in [30]).3 The main other back-
ground, tt̄ production, has a K-factor of about 2 (found
comparing the HERWIG total cross section to [32]). This
suggests that our final LO-based signal/

√
background es-

timates ought not to be too strongly affected by higher
order corrections, though further detailed NLO studies
would be of value.

Let us now turn to the details of the event selection.
The candidate Higgs jet should have a pT greater than
some p̂min

T . The jet R-parameter values commonly used
by the experiments are typically in the range 0.4 - 0.7.
Increasing the R-parameter increases the fraction of con-
tained Higgs decays. Scanning the region 0.6 < R < 1.6
for various values of p̂min

T indicates an optimum value
around R = 1.2 with p̂min

T = 200 GeV.

Three subselections are used for vector bosons: (a) An
e+e− or µ+µ− pair with an invariant mass 80 GeV <
m < 100 GeV and pT > p̂min

T . (b) Missing transverse
momentum > p̂min

T . (c) Missing transverse momentum

2 The non-default parameter setting are: PRSOF=0,
JMRAD(73)=1.8, PTJIM=4.9 GeV, JMUEO=1, with
CTEQ6L [22] PDFs.

3 For the V bb̄ backgrounds these results hold as long as both the
vector boson and bb̄ jet have a high pT ; relaxing the requirement
on pTV leads to enhanced K-factors from electroweak double-
logarithms.

Mass (GeV)

0 20 40 60 80 100 120 140 160 180 200

-1
E

v
e

n
ts

 /
 8

G
e
V

 /
 3

0
fb

0

2

4

6

8

10

12

14

16

Mass (GeV)

0 20 40 60 80 100 120 140 160 180 200

-1
E

v
e

n
ts

 /
 8

G
e
V

 /
 3

0
fb

0

2

4

6

8

10

12

14

16 qq

V+jets

VV
V+Higgs

 = 2.1BS/
in 112-128GeV

(a)

Mass (GeV)

0 20 40 60 80 100 120 140 160 180 200

-1
E

v
e

n
ts

 /
 8

G
e
V

 /
 3

0
fb

0

20

40

60

80

100

Mass (GeV)

0 20 40 60 80 100 120 140 160 180 200

-1
E

v
e

n
ts

 /
 8

G
e
V

 /
 3

0
fb

0

20

40

60

80

100 qq

V+jets

VV
V+Higgs

 = 3.1BS/
in 112-128GeV

(b)

Mass (GeV)

0 20 40 60 80 100 120 140 160 180 200

-1
E

v
e

n
ts

 /
 8

G
e

V
 /

 3
0

fb

0

5

10

15

20

25

30

35

Mass (GeV)

0 20 40 60 80 100 120 140 160 180 200

-1
E

v
e

n
ts

 /
 8

G
e

V
 /

 3
0

fb

0

5

10

15

20

25

30

35

qq

V+jets

VV
V+Higgs

 = 2.9BS/
in 112-128GeV

(c)

Mass (GeV)

0 20 40 60 80 100 120 140 160 180 200

-1
E

v
e

n
ts

 /
 8

G
e

V
 /

 3
0

fb

0

20

40

60

80

100

120

140

Mass (GeV)

0 20 40 60 80 100 120 140 160 180 200

-1
E

v
e

n
ts

 /
 8

G
e

V
 /

 3
0

fb

0

20

40

60

80

100

120

140
qq

V+jets

VV
V+Higgs

 = 4.5BS/
in 112-128GeV

(d)

FIG. 2: Signal and background for a 115 GeV SM Higgs
simulated using HERWIG, C/A MD-F with R = 1.2 and
pT > 200 GeV, for 30 fb−1. The b tag efficiency is assumed
to be 60% and a mistag probability of 2% is used. The qq̄
sample includes dijets and tt̄. The vector boson selections
for (a), (b) and (c) are described in the text, and (d) shows
the sum of all three channels. The errors reflect the statisti-
cal uncertainty on the simulated samples, and correspond to
integrated luminosities > 30 fb−1.

> 30 GeV plus a lepton (e or µ) with pT > 30 GeV,
consistent with a W of nominal mass with pT > p̂min

T . It
may also be possible, by using similar techniques to re-
construct hadronically decaying bosons, to recover signal
from these events. This is a topic left for future study.

To reject backgrounds we require that there be no lep-
tons with |η| < 2.5, pT > 30 GeV apart from those used
to reconstruct the leptonic vector boson, and no b-tagged
jets in the range |η| < 2.5, pT > 50 GeV apart from the
Higgs candidate. For channel (c), where the tt̄ back-
ground is particularly severe, we require that there are
no additional jets with |η| < 3, pT > 30 GeV. The re-
jection might be improved if this cut were replaced by a
specific top veto [5]. However, without applying the sub-
jet mass reconstruction to all jets, the mass resolution
for R = 1.2 is inadequate.

The results for R = 1.2, p̂min
T = 200 GeV are shown

in Fig. 2, for mH = 115 GeV. The Z peak from ZZ and
WZ events is clearly visible in the background, providing
a critical calibration tool. Relaxing the b-tagging selec-
tion would provide greater statistics for this calibration,
and would also make the W peak visible. The major
backgrounds are from W or Z+jets, and (except for the
HZ(Z → l+l−) case), tt̄.

Combining the three sub-channels in Fig. 2d, and sum-
ming signal and background over the two bins in the
range 112-128 GeV, the Higgs is seen with a significance
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Further techniques for jet grooming

Pruning Trimming
[PRD 80 (2009), S.Ellis, Vermilion and 
Walsh ] [JHEP 1002 (2010), Krohn, Thaler and Wang]

•  Run a jet algorithm (kT) on a found jet
    (Anti-kT, large cone R), with Rsub 
    smaller than R 

•  Discard all subjets with

mhard (181)

msoft
j → mhard (182)

cos∗ θ (183)

Rl,j ≥ 0.4 (184)

∑

Rhadi,l≤0.2

pT,hadi ≤ 10 GeV (185)

1/(1− cos ν) (186)

J → J1, J2 (187)

max(m1, m2) ≤ 0.67m (188)

y12 =
min(p2

t1, p
2
t2)

m2
12

∆R2
12 % min(z1, z2)

max(z1, z2)
> 0.09 (189)

Rfilt = min(0.3, Rbb̄/2) (190)

J1 (191)

J (192)

Ji (193)

pT,J ≥ 30 GeV (194)

Smax (195)

σ

E
=

a√
E (GeV )

+ b +
c

E
(196)

S/
√

B % 9 (197)

S/
√

B % 5 (198)

dij = min(p−2
Ti , p−2

Tj )
∆Rij

R2
(199)

diB = p−2
Ti (200)

pT = fcutΛ (201)
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•  Remaining subjets from the new 
   (trimmed) jet

• Run CA or kT algorithm on 
constituents of found jet (large cone: 
R).  At each recombination               
test if:

we choose for both the Cambridge/Aachen algorithm. In every recombination step of the
second jet algorithm specific cuts have to be passed. Usually two parameters are used to
decide if a recombination i, j → p is done:

z =
min(pTi , pTj )

pTp

< zcut and ∆Rij > Dcut. (1.1)

If both conditions are full-filled the subjets i and j are not merged to p. In this case
the softer subjet is discarded and the algorithm proceeds. The procedure is generic and
does not need a biased knowledge of the specific decay of the heavy resonance - as long as
the event’s final-state is not very busy. For the following analysis we use zcut = 0.1 and
Dcut = 0.5 ≈ mJ/pTJ , which was outlined in [20] to be a reasonable choice.

Trimming again is much closer to the Filtering procedure [21]. In a first step the fat
jets of the events are established using a specific jet algorithm. In the following we us
Anti − KT [5], giving a symmetric cone around the hard subjets. In a second step the fat
jets’ constituents are reclustered into subjets using a possibly different jet algorithm, here
KT [6], and a smaller cone-size Rsub. The subjets which obey pTi > fcut · pT,fatjet, where
fcut is a dimensionless parameter, are recombined to form the ’trimmed jet’. We are going
to use fcut = 0.03 and Rsub = 0.2 throughout. Not using a specific number of subjets as
in Filtering but applying a lower pt cut on the subjets makes this procedure generic and
a knowledge of the number of the decay products of the heavy resonance is not necessary
either.

True, after all of these sculpturing methods, especially in highly boosted configurations,
the resulting reconstructed subjet is usually in much better ’shape’ with respect to the
physical mass of the resonance, e.g. a top quark or a Higgs boson. But for light quark jets
the ’shapes’ may differ between the different subjet algorithms.

In this paper we try to utilize this observation in phenomenological studies. We probe
two different methods to measure the confidence of having found a heavy resonance over
the background: the likelihood ratio method and the usual counting method, expressed in
a ratio S/

√
B.

This paper is organized in the following way:
Section 2 is dedicated to the first application of the likelihood ratio approach in the tt̄

production process. In section 3 we apply the same method to the HZ production process.
In appendix A we describe and partly repeat the steps of how to use the likelihood ratio
to extract a signal from the background [1].

2. Toy example: tt̄ identification

To illustrate the potential for improvements of the outlined procedure we construct a toy
example. The reconstruction of boosted top jets has been considered in many different
subjet analysis before [13, 16, 15, 17, 18, 4]. Here we assume a scenario where a resonance
in the S channel, e.g. from a strongly coupled sector [22], splits into tt̄ and we only consider
the case where the transverse momentum of the hardest top is larger than 350 GeV. We
further demand an isolated lepton with pTl > 15 GeV and expect a total signal cross-section

– 2 –
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and

• If both conditions are full-filled, 
veto on the recombination - discard 
the lower pT daughter and 
continue.

• The resulting jet is the new 
(pruned) jet
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Pruning vs Trimming
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Conclusions

! Trimming and Pruning are complementary techniques:

! Trimming is for QCD jets, Pruning for boosted heavy 
objects

! Very promising results, substantial reconstruction 
improvement.

! Worth thinking about useful calculations to check its 
validity on LHC data.

David Krohn‘s conclusion at the Workshop in Seattle:

http://silicon.phys.washington.edu/JetsWorkshop/Krohn.pdf

Donnerstag, 24. Juni 2010
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! Worth thinking about useful calculations to check its 
validity on LHC data.

David Krohn‘s conclusion at the Workshop in Seattle:

http://silicon.phys.washington.edu/JetsWorkshop/Krohn.pdf

Both do their job - 
but differently

Use it!
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What happens if we run Pruning and Trimming simultaneously?

Dijet Pythia 8

Dijet Pythia 6

Dijet Herwig++

BOOST 2010                 Oxford      Michael Spannowsky                          24/06/2010                   

Thanks to Christoph 
Hackstein

• With granularity and 
  cell pT cut of 0.5 GeV

• hardest jet pT > 150 
GeV

chosen:
R=1.2 
Pruning (CA)
Trimming (aKT,KT)
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Prun + Trim
[110/125, 105/120]

Prun + Trim
[115/130, 110/125]

Signal [fb] 0.16 0.14
Background [fb] 0.13 0.11

S/B 1.3 1.3
S/

√
B [30 fb−1] 2.5 2.4

Figure 5: Mass distribution for hardest jet in signal with MH = 115 GeV (upper row) and
background (lower row).

For the likelihood ratio estimation we use 5 GeV bins in the range of 90-140 GeV. We
assume the true Higgs mass to be in this region. Lower masses are anyway experimentally
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Combine Pruning, Trimming and Mass-Drop/Filtering

Run BDRS analysis for ZH production
Apply pruning and trimming on Higgs candidate
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Figure 7: Signal (upper row) and background (lower row) mass distribution for hardest jet
for Pruning and Trimming procedure with MH = 120 GeV. We only vary the Pruning zcut =
(0.05, 0.1, 0.2) from left to right.

paper, but a reliable simulation of them is beyond the scope of our work. Thus all results
shown are without detector smearing effects.

A. Analysis of data with relative likelihoods

There is a very general way of analyzing data and of combining different analyses of data
that involves using relative likelihoods. This method, in one form or another, is quite
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Z=0.05 Z=0.1 Z=0.2
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not at other sources of error. Additionally, we note that 〈L(n)〉SB ≈ 2 is not nearly

enough to claim a discovery of the signal; however, if one had 〈L(n)〉SB ≈ 4 from another

independent method, such as a search for WH production, then the ability to add 2 to

this would be not insignificant.

M (f)
Jet ∈ Wf

M (f)
Jet ∈ Wf

M (t)
Jet ∈ Wt

M (f)
Jet ∈ Wf

M (p)
Jet ∈ Wp

M (p)
Jet ∈ Wp

M (t)
Jet ∈ Wt

Signal cross section [fb] 0.20 0.18 0.17 0.17

Backgrnd cross section [fb] 0.30 0.20 0.17 0.16

s/b 0.67 0.90 1.0 1.1

s/
√
b (

∫
dL = 30 fb−1) 2.0 2.2 2.3 2.3

〈L(n)〉SB (
∫
dL = 30 fb−1) 1.7 1.9 2.0 2.1

Table 3: Statistical significance of HZ results for an integrated luminosity of 30 fb−1. Here we
simply count the expected number of signal events, s, and background events, b, in certain windows
for the mass of the filtered jet, M (f)

Jet , the mass of the trimmed jet, M (t)
Jet, and the mass of the pruned

jet, M (p)
Jet . The mass windows chosen areWf = (110 GeV, 125 GeV), Wt = (105 GeV, 120 GeV), and

Wp = (110 GeV, 125 GeV). The Higgs mass assumed when generating events is MHiggs = 115 GeV.
In the first column, we ask only that the filtered jet mass be in the window Wf . In the remaining
columns, we combine methods by asking that two masses be in the corresponding windows. For
each type of measurement, we show three measures of statistical significance, s/b, s/

√
b, and the

logarithm of the likelihood ratio based on s and b, eq. (2.8).

It is rather limiting to base the assessment of whether data favors the presence of the

ZH signal in addition to the background on simply the counts in a single window in a pair

of jet masses. As we noted in our example of tt̄ production in section 2, the experiment

will give counts nJ in each bin J shown in figure 6. Again, we can base our assessment

on the log likelihood ratio using all of the information.4 Then the likelihood ratio is the

product of the likelihood ratios for all of the bins used. Its logarithm is given by

L({n},m) =
∑

J

[
nJ log

(
1 +

sJ(m)

bJ

)
− sJ(m)

]
. (3.6)

Here we have included in the notation the fact that the expected number of signal events

sJ in a certain bin depends on the assumed Higgs boson mass, m. Given data {n}, one
can test not only whether the presence of the ZH signal is favored, but how the likelihood

favoring the presence of the signal depends on the assumed mass m. The expectation value

of L({n},m) if the true Higgs boson mass is MHiggs and the signal is present along with

the background is given by

〈L({n},m)〉SB =
∑

J

[
(sJ(MHiggs) + bJ) log

(
1 +

sJ(m)

bJ

)
− sJ(m)

]
. (3.7)

We have computed 〈L({n},m)〉SB for nine assumed values of m and for the three combi-

nations of using two out of three of the filtered jet mass, the trimmed jet mass, and the
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mend that the parameter zcut, Eq. (2.5), be set to 0.1. That is the value we have used.

However, we find that the value 0.05 does a better job in this application, as shown in

table 4. Changing to zcut = 0.05 allows the pruned jet to absorb more soft radiation. This

enhances the asymmetry in the jet mass between pruning and trimming. Although the cor-

relation of the jet mass for the signal process is weakened it mainly affects the background

of light parton jets, see figure 8.

Figure 8: Joint distributions between pairs of the trimmed jet mass M (t)
Jet and the pruned jet

mass M (p)
Jet for the ZH signal (left column) and the background (right column). The events were

generated with MHiggs = 115 GeV and zcut = 0.05.

One can well be concerned that smear-
M (p)

Jet ∈ Wp

M (t)
Jet ∈ Wt

Signal cross section [fb] 0.16

Backgrnd cross section [fb] 0.13

s/b 1.3

s/
√
b (

∫
dL = 30 fb−1) 2.4

〈L(n)〉SB (
∫
dL = 30 fb−1) 2.2

Table 4: Statistical significance of HZ results for
an integrated luminosity of 30 fb−1 as in table 3 ex-
cept that here we take zcut in the pruning method to
be 0.05 instead of 0.1. This improves the statistical
significance compared to the (M (p)

Jet ,M
(t)
Jet) results in

the rightmost column of table 3.

ing of jet masses because of detector ef-

fects might affect the results presented

here. To check, we applied Gaussian smear-

ing on M (f)
Jet , M

(t)
Jet and M (p)

Jet according to

[20] but could not find sizable differences

in the log likelihood ratio. More realistic

finite jet resolution effects might change

the quantitative statements in this paper,

but a reliable simulation of them is be-

yond the scope of our work. Thus all re-

sults shown are without detector smear-

ing effects.

4. Conclusion

In searches for a narrow boosted resonance in which the signal is small compared to a

background coming from QCD induced light parton jets, the combination of pruning,

trimming and filtering can help to extract the signal from the background. One could

even imagine improving on new physics searches by implementing this approach in generic

heavy resonance taggers.
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exp(L) where
L(n) = n log

(
1 +

s

b

)
− s . (2.7)

If L is substantially greater than 1, the result strongly favors the interpretation that the tt̄

signal is present. For instance L = 4 favors the presence of the signal by a ratio exp(L) ≈ 55.
We review some properties of the likelihood ratio in appendix A.

The expectation value of L(n) if the SB theory is right is

〈L(n)〉SB = (s + b) log
(
1 +

s

b

)
− s . (2.8)

Thus, we can expect to reliably see the tt̄ signal if 〈L(n)〉SB is substantially greater than
1. As a minimum requirement, we may ask for 〈L(n)〉SB > 4. The results are shown
in table 1. We see that trimming does better than pruning, but neither method provides
enough statistical power to achieve s/

√
b > 4 with an integrated luminosity of just 30 pb−1.

(Of course, the statistical insufficiency goes away with more luminosity, but in this simple
example we imagine that 30 pb−1 is all the luminosity that we have.)

Trimming Pruning
Signal cross section [fb] 590 503

Background cross section [fb] 1571 2480
s/b 0.38 0.20

s/
√

b (
∫

dL = 30 pb−1) 2.6 1.7
〈L(n)〉SB (

∫
dL = 30 pb−1) 3.0 1.4

Table 1: Statistical significance of trimming and pruning results for an integrated luminosity of
30 pb−1. Here we simply count the expected number of signal events, s, and background events, b,
in a top quark mass window 160 GeV < MJet < 200 GeV. The logarithm of the likelihood ratio
based on these expected counts is 〈L(n)〉SB, eq. (2.8).

It is rather artificial to base the SB vs. B assessment on simply the counts in a single
jet mass window. The experiment will give counts nJ in each bin J shown in figures 1
and 2. We can base our assessment on the log likelihood ratio using all of the information.
Then the likelihood ratio is the product of the likelihood ratios for all of the bins used. Its
logarithm is

L({n}) =
∑

J

[
nJ log

(
1 +

sJ

bJ

)
− sJ

]
. (2.9)

Here nJ is the number of events in bin J and sJ and bJ are the corresponding signal and
background cross sections times the integrated luminosity.

The expectation value of L({n}) if the SB theory is right is

〈L({n})〉SB =
∑

J

[
(sJ + bJ) log

(
1 +

sJ

bJ

)
− sJ

]
. (2.10)

Using the full bin-by-bin information, we find

〈L({n})〉SB = 4.4 , trimming ,

〈L({n})〉SB = 2.4 , pruning .
(2.11)
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not at other sources of error. Additionally, we note that 〈L(n)〉SB ≈ 2 is not nearly

enough to claim a discovery of the signal; however, if one had 〈L(n)〉SB ≈ 4 from another

independent method, such as a search for WH production, then the ability to add 2 to

this would be not insignificant.
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Table 3: Statistical significance of HZ results for an integrated luminosity of 30 fb−1. Here we
simply count the expected number of signal events, s, and background events, b, in certain windows
for the mass of the filtered jet, M (f)

Jet , the mass of the trimmed jet, M (t)
Jet, and the mass of the pruned

jet, M (p)
Jet . The mass windows chosen areWf = (110 GeV, 125 GeV), Wt = (105 GeV, 120 GeV), and

Wp = (110 GeV, 125 GeV). The Higgs mass assumed when generating events is MHiggs = 115 GeV.
In the first column, we ask only that the filtered jet mass be in the window Wf . In the remaining
columns, we combine methods by asking that two masses be in the corresponding windows. For
each type of measurement, we show three measures of statistical significance, s/b, s/

√
b, and the

logarithm of the likelihood ratio based on s and b, eq. (2.8).

It is rather limiting to base the assessment of whether data favors the presence of the

ZH signal in addition to the background on simply the counts in a single window in a pair

of jet masses. As we noted in our example of tt̄ production in section 2, the experiment

will give counts nJ in each bin J shown in figure 6. Again, we can base our assessment

on the log likelihood ratio using all of the information.4 Then the likelihood ratio is the

product of the likelihood ratios for all of the bins used. Its logarithm is given by

L({n},m) =
∑

J

[
nJ log

(
1 +

sJ(m)

bJ

)
− sJ(m)

]
. (3.6)

Here we have included in the notation the fact that the expected number of signal events

sJ in a certain bin depends on the assumed Higgs boson mass, m. Given data {n}, one
can test not only whether the presence of the ZH signal is favored, but how the likelihood

favoring the presence of the signal depends on the assumed mass m. The expectation value

of L({n},m) if the true Higgs boson mass is MHiggs and the signal is present along with

the background is given by

〈L({n},m)〉SB =
∑

J

[
(sJ(MHiggs) + bJ) log

(
1 +

sJ(m)

bJ

)
− sJ(m)

]
. (3.7)

We have computed 〈L({n},m)〉SB for nine assumed values of m and for the three combi-

nations of using two out of three of the filtered jet mass, the trimmed jet mass, and the
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mend that the parameter zcut, Eq. (2.5), be set to 0.1. That is the value we have used.

However, we find that the value 0.05 does a better job in this application, as shown in

table 4. Changing to zcut = 0.05 allows the pruned jet to absorb more soft radiation. This

enhances the asymmetry in the jet mass between pruning and trimming. Although the cor-

relation of the jet mass for the signal process is weakened it mainly affects the background

of light parton jets, see figure 8.

Figure 8: Joint distributions between pairs of the trimmed jet mass M (t)
Jet and the pruned jet

mass M (p)
Jet for the ZH signal (left column) and the background (right column). The events were

generated with MHiggs = 115 GeV and zcut = 0.05.

One can well be concerned that smear-
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Jet ∈ Wt

Signal cross section [fb] 0.16

Backgrnd cross section [fb] 0.13

s/b 1.3

s/
√
b (

∫
dL = 30 fb−1) 2.4

〈L(n)〉SB (
∫
dL = 30 fb−1) 2.2

Table 4: Statistical significance of HZ results for
an integrated luminosity of 30 fb−1 as in table 3 ex-
cept that here we take zcut in the pruning method to
be 0.05 instead of 0.1. This improves the statistical
significance compared to the (M (p)

Jet ,M
(t)
Jet) results in

the rightmost column of table 3.

ing of jet masses because of detector ef-

fects might affect the results presented

here. To check, we applied Gaussian smear-

ing on M (f)
Jet , M

(t)
Jet and M (p)

Jet according to

[20] but could not find sizable differences

in the log likelihood ratio. More realistic

finite jet resolution effects might change

the quantitative statements in this paper,

but a reliable simulation of them is be-

yond the scope of our work. Thus all re-

sults shown are without detector smear-

ing effects.

4. Conclusion

In searches for a narrow boosted resonance in which the signal is small compared to a

background coming from QCD induced light parton jets, the combination of pruning,

trimming and filtering can help to extract the signal from the background. One could

even imagine improving on new physics searches by implementing this approach in generic

heavy resonance taggers.
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exp(L) where
L(n) = n log

(
1 +

s

b

)
− s . (2.7)

If L is substantially greater than 1, the result strongly favors the interpretation that the tt̄

signal is present. For instance L = 4 favors the presence of the signal by a ratio exp(L) ≈ 55.
We review some properties of the likelihood ratio in appendix A.

The expectation value of L(n) if the SB theory is right is

〈L(n)〉SB = (s + b) log
(
1 +

s

b

)
− s . (2.8)

Thus, we can expect to reliably see the tt̄ signal if 〈L(n)〉SB is substantially greater than
1. As a minimum requirement, we may ask for 〈L(n)〉SB > 4. The results are shown
in table 1. We see that trimming does better than pruning, but neither method provides
enough statistical power to achieve s/

√
b > 4 with an integrated luminosity of just 30 pb−1.

(Of course, the statistical insufficiency goes away with more luminosity, but in this simple
example we imagine that 30 pb−1 is all the luminosity that we have.)

Trimming Pruning
Signal cross section [fb] 590 503

Background cross section [fb] 1571 2480
s/b 0.38 0.20

s/
√

b (
∫

dL = 30 pb−1) 2.6 1.7
〈L(n)〉SB (

∫
dL = 30 pb−1) 3.0 1.4

Table 1: Statistical significance of trimming and pruning results for an integrated luminosity of
30 pb−1. Here we simply count the expected number of signal events, s, and background events, b,
in a top quark mass window 160 GeV < MJet < 200 GeV. The logarithm of the likelihood ratio
based on these expected counts is 〈L(n)〉SB, eq. (2.8).

It is rather artificial to base the SB vs. B assessment on simply the counts in a single
jet mass window. The experiment will give counts nJ in each bin J shown in figures 1
and 2. We can base our assessment on the log likelihood ratio using all of the information.
Then the likelihood ratio is the product of the likelihood ratios for all of the bins used. Its
logarithm is

L({n}) =
∑

J

[
nJ log

(
1 +

sJ

bJ

)
− sJ

]
. (2.9)

Here nJ is the number of events in bin J and sJ and bJ are the corresponding signal and
background cross sections times the integrated luminosity.

The expectation value of L({n}) if the SB theory is right is

〈L({n})〉SB =
∑

J

[
(sJ + bJ) log

(
1 +

sJ

bJ

)
− sJ

]
. (2.10)

Using the full bin-by-bin information, we find

〈L({n})〉SB = 4.4 , trimming ,

〈L({n})〉SB = 2.4 , pruning .
(2.11)
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not at other sources of error. Additionally, we note that 〈L(n)〉SB ≈ 2 is not nearly

enough to claim a discovery of the signal; however, if one had 〈L(n)〉SB ≈ 4 from another

independent method, such as a search for WH production, then the ability to add 2 to

this would be not insignificant.
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Table 3: Statistical significance of HZ results for an integrated luminosity of 30 fb−1. Here we
simply count the expected number of signal events, s, and background events, b, in certain windows
for the mass of the filtered jet, M (f)

Jet , the mass of the trimmed jet, M (t)
Jet, and the mass of the pruned

jet, M (p)
Jet . The mass windows chosen areWf = (110 GeV, 125 GeV), Wt = (105 GeV, 120 GeV), and

Wp = (110 GeV, 125 GeV). The Higgs mass assumed when generating events is MHiggs = 115 GeV.
In the first column, we ask only that the filtered jet mass be in the window Wf . In the remaining
columns, we combine methods by asking that two masses be in the corresponding windows. For
each type of measurement, we show three measures of statistical significance, s/b, s/

√
b, and the

logarithm of the likelihood ratio based on s and b, eq. (2.8).

It is rather limiting to base the assessment of whether data favors the presence of the

ZH signal in addition to the background on simply the counts in a single window in a pair

of jet masses. As we noted in our example of tt̄ production in section 2, the experiment

will give counts nJ in each bin J shown in figure 6. Again, we can base our assessment

on the log likelihood ratio using all of the information.4 Then the likelihood ratio is the

product of the likelihood ratios for all of the bins used. Its logarithm is given by

L({n},m) =
∑

J

[
nJ log

(
1 +

sJ(m)

bJ

)
− sJ(m)

]
. (3.6)

Here we have included in the notation the fact that the expected number of signal events

sJ in a certain bin depends on the assumed Higgs boson mass, m. Given data {n}, one
can test not only whether the presence of the ZH signal is favored, but how the likelihood

favoring the presence of the signal depends on the assumed mass m. The expectation value

of L({n},m) if the true Higgs boson mass is MHiggs and the signal is present along with

the background is given by

〈L({n},m)〉SB =
∑

J

[
(sJ(MHiggs) + bJ) log

(
1 +

sJ(m)

bJ

)
− sJ(m)

]
. (3.7)

We have computed 〈L({n},m)〉SB for nine assumed values of m and for the three combi-

nations of using two out of three of the filtered jet mass, the trimmed jet mass, and the
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mend that the parameter zcut, Eq. (2.5), be set to 0.1. That is the value we have used.

However, we find that the value 0.05 does a better job in this application, as shown in

table 4. Changing to zcut = 0.05 allows the pruned jet to absorb more soft radiation. This

enhances the asymmetry in the jet mass between pruning and trimming. Although the cor-

relation of the jet mass for the signal process is weakened it mainly affects the background

of light parton jets, see figure 8.

Figure 8: Joint distributions between pairs of the trimmed jet mass M (t)
Jet and the pruned jet

mass M (p)
Jet for the ZH signal (left column) and the background (right column). The events were

generated with MHiggs = 115 GeV and zcut = 0.05.

One can well be concerned that smear-
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Table 4: Statistical significance of HZ results for
an integrated luminosity of 30 fb−1 as in table 3 ex-
cept that here we take zcut in the pruning method to
be 0.05 instead of 0.1. This improves the statistical
significance compared to the (M (p)

Jet ,M
(t)
Jet) results in

the rightmost column of table 3.

ing of jet masses because of detector ef-

fects might affect the results presented

here. To check, we applied Gaussian smear-

ing on M (f)
Jet , M

(t)
Jet and M (p)

Jet according to

[20] but could not find sizable differences

in the log likelihood ratio. More realistic

finite jet resolution effects might change

the quantitative statements in this paper,

but a reliable simulation of them is be-

yond the scope of our work. Thus all re-

sults shown are without detector smear-

ing effects.

4. Conclusion

In searches for a narrow boosted resonance in which the signal is small compared to a

background coming from QCD induced light parton jets, the combination of pruning,

trimming and filtering can help to extract the signal from the background. One could

even imagine improving on new physics searches by implementing this approach in generic

heavy resonance taggers.
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exp(L) where
L(n) = n log

(
1 +
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)
− s . (2.7)

If L is substantially greater than 1, the result strongly favors the interpretation that the tt̄

signal is present. For instance L = 4 favors the presence of the signal by a ratio exp(L) ≈ 55.
We review some properties of the likelihood ratio in appendix A.

The expectation value of L(n) if the SB theory is right is

〈L(n)〉SB = (s + b) log
(
1 +

s

b

)
− s . (2.8)

Thus, we can expect to reliably see the tt̄ signal if 〈L(n)〉SB is substantially greater than
1. As a minimum requirement, we may ask for 〈L(n)〉SB > 4. The results are shown
in table 1. We see that trimming does better than pruning, but neither method provides
enough statistical power to achieve s/

√
b > 4 with an integrated luminosity of just 30 pb−1.

(Of course, the statistical insufficiency goes away with more luminosity, but in this simple
example we imagine that 30 pb−1 is all the luminosity that we have.)
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Table 1: Statistical significance of trimming and pruning results for an integrated luminosity of
30 pb−1. Here we simply count the expected number of signal events, s, and background events, b,
in a top quark mass window 160 GeV < MJet < 200 GeV. The logarithm of the likelihood ratio
based on these expected counts is 〈L(n)〉SB, eq. (2.8).

It is rather artificial to base the SB vs. B assessment on simply the counts in a single
jet mass window. The experiment will give counts nJ in each bin J shown in figures 1
and 2. We can base our assessment on the log likelihood ratio using all of the information.
Then the likelihood ratio is the product of the likelihood ratios for all of the bins used. Its
logarithm is

L({n}) =
∑

J

[
nJ log

(
1 +

sJ

bJ

)
− sJ

]
. (2.9)

Here nJ is the number of events in bin J and sJ and bJ are the corresponding signal and
background cross sections times the integrated luminosity.

The expectation value of L({n}) if the SB theory is right is

〈L({n})〉SB =
∑

J

[
(sJ + bJ) log

(
1 +

sJ

bJ

)
− sJ

]
. (2.10)

Using the full bin-by-bin information, we find

〈L({n})〉SB = 4.4 , trimming ,

〈L({n})〉SB = 2.4 , pruning .
(2.11)
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FilteringPruning
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Filtering

Generic resonance tagger should run comb. of procedures

Maybe we can gain insight to improve on subjet procedures
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Brief summary of tth

Motivation: • sizable cross-section
• Higgs discovery contribution in low mass range
• access to t- and b-Yukawa couplings

ATLAS detector and physics performance Volume I

Technical Design Report 9 April 1999
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Figure 19-i ATLAS sensitivity for the discovery of a Standard Model Higgs boson. The statistical significances

are plotted for individual channels, as well as for the combination of all channels, assuming integrated luminosi-

ties of 30 fb-1 (top) and 100 fb-1 (bottom). Depending on the numbers of signal and background events, the sta-

tistical significance has been computed as S/ or using Poisson statistics. In the case of the H ! WW*

channel, a systematic uncertainty of #5% on the total number of background events has been assumed (this

uncertainty has been included in this case, since no mass peak can be reconstructed and the Higgs boson sig-

nal has therefore to be extracted from an excess of events).
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tth - using boosted jets
[T. Plehn, G. Salam, MS]

Motivation: • sizable cross-section
• Higgs discovery contribution in low mass range
• access to t- and b-Yukawa couplings

High expectations:

[ATLAS TDR 1999]

tth major channel

given the amount of Monte Carlo data available (out to q0 between around 9 to 16, i.e., to the level of a
3 to 4! discovery). At present it is not practical to verify directly that the chi-square formula remains
valid to the 5! level (i.e., out to q0 = 25). Thus the results on discovery significance presented here rest
on the assumption that the asymptotic distribution is a valid approximation to at least the 5! level.
The validation exercises carried here out indicate that the methods used should be valid, or in some

cases conservative, for an integrated luminosity of at least 2 fb−1. At earlier stages of the data taking,
one will be interested primarily in exclusion limits at the 95% confidence level. For this the distributions
of the test statistic qµ at different values of µ can be determined with a manageably small number of
events. It is therefore anticipated that we will rely on Monte Carlo methods for the initial phase of the
experiment.

4 Results of the combination

4.1 Combined discovery sensitivity

The full discovery likelihood ratio for all channels combined, "s+b(0), is calculated using Eq. 33. This
uses the median likelihood ratio of each channel, "s+b,i(0), found either by generating toy experiments
under the s+b hypothesis and calculating the median of the "s+b,i distribution or by approximating the
median likelihood ratio using the Asimov data sets with µA,i = 1. Both approaches were validated to
agree with each other. The discovery significance is calculated using Eq. 36, i.e., Z ≈

√

−2ln" (0),
where " (0) is the combined median likelihood ratio.
The resulting significances per channel and the combined one are shown in Fig. 16 for an integrated

luminosity of 10 fb−1.
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Figure 16: The median discovery significance for the various channels and the combination with an integrated
luminosity of 10 fb−1 for (a) the lower mass range (b) for masses up to 600 GeV.

Themedian discovery significance as a function of the integrated luminosity and Higgs mass is shown
colour coded in Fig. 17. The full line indicates the 5! contour. Note that the approximations used do
not hold for very low luminosities (where the expected number of events is low) and therefore the results
below about 2fb−1 should be taken as indications only. In most cases, however, the approximations tend
to underestimate the true median significance.

4.2 Combined exclusion sensitivity

The full likelihood ratio of all channels used for exclusion for a signal strength µ , "b(µ), is calculated
using Eq. 34 with the median likelihood ratios of each channel, "b,i(µ), calculated, either by generating

27

HIGGS – STATISTICAL COMBINATION OF SEVERAL IMPORTANT STANDARD MODEL HIGGS . . .
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Expected Performance of the 
ATLAS Experiment, 

CERN-OPEN-2008-020

tth 
not considered

Cammin 
and 

Schumacher
(ATLAS)

O4 = q̄α
Rbα

Lq̄β
Lbβ

R (161)

O5 = q̄α
Rbβ

Lq̄β
Lbα

R (162)

pp → b̄bµ+νµ (163)

tanβ = 9.6 (164)

tanβ = 9.6 (165)

At = 900GeV (166)

δLR,31 = 0.7 (167)

S√
B

= 5 (168)

S = 2%B (169)

80fb−1 (170)

5σ (171)

cos(νb,j1) < −0.5 (172)

cos(νb,j2) < −0.5 (173)
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12

pi + pj (177)
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S/
√

B ! 2.2 (180)

13

[Plehn, Salam, MS, PRL 104 2010] 
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Top

Higgs

Only 2 or 3 b in one 
cone reduces 
combinatorics 

min. selection cuts:

2 Jets with 

pi + pj (177)

ZZγ/WWγ (178)

S/B ! 1/9 (179)
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√
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30 fb−1 (181)

σNLO = 702 fb (182)

pT,j ≥ 200 GeV (183)

13
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pT,j ≥ 200 GeV (183)

pT,l ≥ 15 GeV (184)
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Signal ~ 24.1 fb
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Jet-algorithm

Boosted scenario should help!
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Nasty backgrounds.....

ttbb
Bredenstein et al.,
 PRL 103 2009;
Belivacqua et al.,
JHEP 0909 2009

tt+jets w+jetsttz

0

0.005

0.01

0 50 100 150 200 250 300 350 400 450 500

1/!
tot

 d!/dp
T

pp " ttH

pp " ttbb

pp " WH

p
T,b

,m
bb

 ! 20 GeV

p
T
"GeV#

p
T,bb

p
T,H

p
T,H

p
T,t

p
T,t

2

10
-4

10
-3

10
-2

10
-1

0 100 200 300 400 500 600 700

1/!
tot

 d!/dp
T

p
T
[GeV]

ttH: p
T,t

ttH: p
T,H

WH: p
T,H

Wjj: p
T,j

FIG. 1: Normalized top and Higgs transverse momentum
spectra in tt̄H production (solid). We also show pT,H in
W−H production (dashed) and the pT of the harder jet in
W−jj production with pT,j > 20 GeV (dotted).

top decay. The latter allows the events to pass the Atlas
and CMS triggers. The main backgrounds are

pp→ tt̄bb̄ irreducible QCD background
pp→ tt̄Z irreducible Z-peak background (2)

To account for higher-order effects we normalize our to-
tal signal rate to the next-to-leading order prediction of
702 fb for mH = 120 GeV [21]. The tt̄bb̄ continuum back-
ground we normalize to 2.6 pb after bottom acceptance
cuts |yb| < 2.5, pT,b > 20 GeV and Rbb > 0.8 [22]. This
conservative rate estimate for very hard events implies a
K factor of σNLO/σLO = 2.2 which we need to attach to
our leading-order background simulation — compared to
K = 1.3 for the signal. Finally, the tt̄Z background at
NLO is normalized to is 1.1 pb [23]. All hard processes
we generate using MadEvent [24], shower and hadronize
via Herwig++ [25] and analyze with FastJet [26].

The QCD background tt̄jj exceeds the tt̄bb̄ rate by
about a factor 200; unless we apply flavor tagging outside
the top quarks we will be swamped by QCD jets. Requir-
ing two b tags will suppress tt̄jbjb by a factor 1/2500, i.e.
below the scale dependence of the tt̄bb̄ rate. In our par-
ticular analysis there is a few-percent chance of the b jet
from the leptonic top ending up in the fat Higgs jet. Com-
bined with one b tag this gives a reduction factor around
1/1000, again good enough to neglect it. For charm-
flavored tt̄cbc̄b the mis-tag probability is only 1/25, but
the starting rate is already at the same level as tt̄bb̄.

Another obvious background is Wjj production. Its
rate drops from roughly 15 nb to 40 pb when we in-
crease the jets’ minimum transverse momentum from 20
to staggered 200/300 GeV, mimicking our boosted Higgs
and top jets. The leptonic W branching ratio and two
bottom tags then reduces it to 3.2 fb. Our top tagger
described below gives a mis-tagging probability around
5.5% (including underlying event), the Higgs mass win-
dow another 10%, i.e. the final Wjj rate is only 0.016 fb.
The charm-flavored Wcj rate starts off with 1/6 of the

signal tt̄bb̄ tt̄Z
events after acceptance eq.(3) 24.4 222.6 7.0
events with one top tag 10.5 83.8 3.0
events with one mrec

bb = 110 · · · 130 GeV 3.0 14.7 0.43
subjet pairings mrec

bb = 110 · · · 130 GeV 3.2 15.9 0.47
subjet pairings after b tags 0.76 1.95 0.06

TABLE I: Number of events or mrec
bb histogram entries per

1 fb−1 including underlying event. Counting the three lead-
ing subjet pairings in the modified Jade distance means that
below row four the number is only approximately the number
of events in 1 fb−1.

Wjj rate, but a tenfold mis-tagging probability, which al-
together leaves us with a total W+jets background well
below 0.05 fb.

Finally, a lower limit mrec
bb > 110 GeV keeps us safely

away from CKM-suppressed W → bc̄ decays where the
charm is mis-identified as a bottom jet.

Search strategy — The motivation for a tt̄H search
with boosted heavy states we see in Fig. 1: the leading
top quark and the Higgs boson both carry sizeable trans-
verse momentum. In our search we first require two hard
jets with a cone radius R =

√
y2 + φ2 < 1.5 and a lepton:

pT,j > 200 GeV |y(H)
j | < 2.5 |y(t)

j | < 4

pT,! > 15 GeV |y!| < 2.5 . (3)

The maximum jet rapidity y is limited by the two bot-
tom tags inside the fat Higgs jet. We then focus on the
structure of the two jets, as shown in Tab. I:
(1) one of the two jets passes the top tagger. If two jets
pass we choose the one closer in the two masses.
(2) the Higgs tagger runs over all remaining jets with
|y| < 2.5. It includes a double bottom tag.
(3) to compute the statistical significance we require
mrec

bb = mH ± 10 GeV.

Top and Higgs taggers — In contrast to other Higgs
physics [9] or new physics [15, 16] applications our Higgs
and top taggers cannot rely on a clean QCD environ-
ment: on the one hand their initial cone size has to be
large enough to accommodate only mildly boosted top
and Higgs states, so additional QCD jets will contam-
inate our fat jets [28]. On the other hand, the small
number of signal events does not allow any sharp rejec-
tion cuts for dirty QCD events. Therefore, the taggers
need to be built to survive busy LHC events.

Our starting point is a C/A jet algorithm with R =
1.5 [27]. For a top candidate which typically has a jet
mass above 200 GeV we assume that there be a complex
hard substructure inside the fat jet and apply a mass
drop selection to all splittings mhard → msoft

j forming
the fat jet; among all splitting we search for those with

maxmsoft
j < 0.8 mhard . (4)

Lazopoulos et al.,
PLB 666 2008

Bevilacqua et al., 
PRL 104 2010

tth (Signal)
Beenakker et al.,

PRL 87 2001;
Reina et al.,
PRD 65 2002

Dittmaier et al,
PRL 98 2007

K=1.57 K=2.3 k=1.53K=1.0

negligible after 
b-tags and 
taggers
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mbb̄ [GeV]
180150120906030

0.6
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0

S[fb−1] B[fb−1] S/B S/
√

B
mH = 115 GeV 1.2 3.8 1/3.2 6.2

120 GeV 1.0 3.8 1/3.8 5.1
130 GeV 0.51 3.3 1/6.5 2.8

S[fb−1] B[fb−1] S/B S/
√

B
mH = 115 GeV 0.57 1.18 1/2.1 5.2 (5.7)

120 GeV 0.48 1.15 1/2.4 4.5 (5.1)
130 GeV 0.29 1.03 1/3.6 2.9 (3.0)

with 2 b-tags

with 3 b-tags

Results

with UE

without UE for 100 1/fb

tremendous improvement on S/B in tth

tth might contribute to Higgs discovery

tth might be a window to Higgs-top coupling
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Backup
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Pruning vs Trimming for same fat-jet definition

fat jet definition: CA
pruning definition: CA
trimming definition: kT

fat jet definition: anti-kT
pruning definition: CA
trimming definition: kT
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Pruning and Trimming using CA
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Log Likelihood Ratio

Figure 8: Joint distributions between pairs of the trimmed jet mass M (t)
Jet and the pruned jet

mass M (p)
Jet for the ZH signal (left column) and the background (right column). The events were

generated with MHiggs = 115 GeV and zcut = 0.05.

be the number of events in bin J . Then the result of the experiment is a list of the values
{n} = {n1, · · · , nN} of the numbers of events in each bin.

We suppose that we have a model
M (p)

Jet ∈ Wp

M (t)
Jet ∈ Wt

Signal cross section [fb] 0.16
Backgrnd cross section [fb] 0.13

s/b 1.3
s/
√

b (
∫

dL = 30 fb−1) 2.4
〈L(n)〉SB (

∫
dL = 30 fb−1) 2.2

Table 4: Statistical significance of HZ results for
an integrated luminosity of 30 fb−1 as in table 3 ex-
cept that here we take zcut in the pruning method to
be 0.05 instead of 0.1. This improves the statistical
significance compared to the (M (p)

Jet , M
(t)
Jet) results in

the rightmost column of table 3.

(say, based on Pythia) for the expected
number of events in each bin if there is
no new physics signal. This is the back-
ground model, designated B. Let us de-
note the expectation value of nJ in the
background model by bJ . We also sup-
pose that we have a model for the ex-
pected number of events in each bin if
there is a certain new physics signal. This
is the model then includes both the back-
ground and the sought signal. We call
this model SB. Let us denote the expec-
tation value of nJ in the signal plus back-
ground model as bJ + sJ . For the moment, we assume that there is no uncertainty in what
models B and SB predict.

Given model B, the probability to find result {n} is

PB({n}) =
∏

J

1
nJ !

(bJ)nJ e−bJ . (A.1)

Given model SB, the probability to find result {n} is

PSB({n}) =
∏

J

1
nJ !

(bJ + sJ)nJ e−bJ−sJ . (A.2)

The ratio of these is the relative likelihood to find the observed result,

R({n}) =
PSB({n})
PB({n}) . (A.3)
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Poisson distributions for background and signal + background:
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This ratio tells one how to modify a prior opinion about the probability that SB as op-
posed to B holds in nature. Thus it is a convenient statistic to describe the results of the
experiment.

We can write the likelihood ratio as

R({n}) = expL({n}) . (A.4)

The logarithm of the likelihood ratio, L({n}), has a simple expression

L({n}) =
∑

J

[nJ log(1 + sJ/bJ)− sJ ] . (A.5)

The theory for signal and background can depend on parameters, so that sJ and bJ

depend on the parameters. Then L({n}) depends on the parameters. Given data {n}, we
can adjust the parameters to find the version of the theory with the biggest L({n}). In this
paper, we consider the simple case in which there is a single parameter7 that we consider
varying, a mass that we denote by m. The signal depends on m; the background does not.
Thus

L({n}, m) =
∑

J

[nJ log(1 + sJ(m)/bJ)− sJ(m)] . (A.6)

To understand this better, it is useful to consider the case in which sJ " bJ and
(nJ − bJ) " bJ in all bins. Then

L =
∑

J

{
[bJ + (nJ − bJ)]

[
sJ(m)

bJ
− sJ(m)2

2b2
J

+ · · ·
]
− sJ(m)

}

=
∑

J

{
sJ(m) + (nJ − bJ)

sJ(m)
bJ

− sJ(m)2

2bJ
+ · · ·− sJ(m)

}

≈
∑

J

{
(nJ − bJ)sJ(m)

bJ
− sJ(m)2

2bJ

}
.

(A.7)

This has a simple interpretation. We see that L is large when the observed signal (nJ −bJ)
is correlated with the expected signal sJ(m). That is, L is large when (nJ − bJ) > 0 in
those bins for which sJ(m) > 0. There is a penalty contribution, sJ(m)2/(2bJ) for each
bin. Thus, to keep L positive, (nJ − bJ) needs to be bigger than sJ(m)/2 in the bins with
expected signal.

Suppose that the SB theory is correct if we set the mass to its true value Mtrue. The
expected value of L({n}, m) in this case is

〈L〉 =
∑

J

[n̄J log(1 + sJ/bJ)− sJ ] , (A.8)

where
n̄J = bj + sJ(Mtrue) . (A.9)

7If sJ/bJ ! 1 in the bins with the most signal, then it is important to know the normalization of the

background quite precisely. In this case, one might introduce a parameter λ that represents the normaliza-

tion of the background and use the data to fix λ.
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Log Likelihood ratio

Exp. Log Likelihood ratio

exp(L) where
L(n) = n log

(
1 +

s

b

)
− s . (2.7)

If L is substantially greater than 1, the result strongly favors the interpretation that the tt̄

signal is present. For instance L = 4 favors the presence of the signal by a ratio exp(L) ≈ 55.
We review some properties of the likelihood ratio in appendix A.

The expectation value of L(n) if the SB theory is right is

〈L(n)〉SB = (s + b) log
(
1 +

s

b

)
− s . (2.8)

Thus, we can expect to reliably see the tt̄ signal if 〈L(n)〉SB is substantially greater than
1. As a minimum requirement, we may ask for 〈L(n)〉SB > 4. The results are shown
in table 1. We see that trimming does better than pruning, but neither method provides
enough statistical power to achieve s/

√
b > 4 with an integrated luminosity of just 30 pb−1.

(Of course, the statistical insufficiency goes away with more luminosity, but in this simple
example we imagine that 30 pb−1 is all the luminosity that we have.)

Trimming Pruning
Signal cross section [fb] 590 503

Background cross section [fb] 1571 2480
s/b 0.38 0.20

s/
√

b (
∫

dL = 30 pb−1) 2.6 1.7
〈L(n)〉SB (

∫
dL = 30 pb−1) 3.0 1.4

Table 1: Statistical significance of trimming and pruning results for an integrated luminosity of
30 pb−1. Here we simply count the expected number of signal events, s, and background events, b,
in a top quark mass window 160 GeV < MJet < 200 GeV. The logarithm of the likelihood ratio
based on these expected counts is 〈L(n)〉SB, eq. (2.8).

It is rather artificial to base the SB vs. B assessment on simply the counts in a single
jet mass window. The experiment will give counts nJ in each bin J shown in figures 1
and 2. We can base our assessment on the log likelihood ratio using all of the information.
Then the likelihood ratio is the product of the likelihood ratios for all of the bins used. Its
logarithm is

L({n}) =
∑

J

[
nJ log

(
1 +

sJ

bJ

)
− sJ

]
. (2.9)

Here nJ is the number of events in bin J and sJ and bJ are the corresponding signal and
background cross sections times the integrated luminosity.

The expectation value of L({n}) if the SB theory is right is

〈L({n})〉SB =
∑

J

[
(sJ + bJ) log

(
1 +

sJ

bJ

)
− sJ

]
. (2.10)

Using the full bin-by-bin information, we find

〈L({n})〉SB = 4.4 , trimming ,

〈L({n})〉SB = 2.4 , pruning .
(2.11)
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Figure 5: Sample results for the log likelihood ratio in the tt̄ production process as a function
of the trial top quark mass m, using trimming and pruning combined and assuming an integrated
luminosity of 30 pb−1. We construct L({n},m) for eight different values of m. Then we com-
pute L({n},m) for five random sets of the counts nJ drawn from Poisson distributions with mean
sJ(Mtop)+ bJ . We also show an error band based on the mean value of L({n},m) and its variance.
Most points are within the error band, but note that 2 σ or larger deviations either upward or
downward will sometimes occur.

Cambridge-Aachen jet algorithm with R = 1.2 and accept an event only if it has a jet with

PT ≥ 200 GeV and |η| < 2.5. This is the same as the event selection in ref. [1].

Having generated events, we now analyze them to look for the ZH signal. We will use

the trimming and pruning analyses described in the previous section and, in addition, we

will use the filtering method. Thus we need to describe the filtering method [1], which has

been applied several times in association with Higgs searches [10, 18].

To use filtering, we first look for jets in the event using the Cambridge-Aachen (C-A)

algorithm with R = 1.2 and select the highest PT jet, the “fat jet.” Then we examine the

fat jet for a mass drop. If we have a signal event, then one of the splittings in the C-A

splitting history is likely to be the H → bb̄ splitting. To look for it, we start at the trunk

of the splitting tree and look at the first splitting, J{ij} → Ji + Jj . If the jet mass change

in this splitting is large enough,

max(Mi,Mj) < µM{ij} (3.3)

with µ = 0.67, and if the transverse momentum in the splitting is large enough,

min(P 2
T,i, P

2
T,j)

M2
{ij}

[
(yi − yj)

2 + (φi − φj)
2
]
> ycut (3.4)

with ycut = 0.09, then we say that the mass drop condition is met and proceed to the next

stage of the analysis. If the mass drop condition is not met, we eliminate the daughter jet
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3 that contain a background cross section of at least 0.5 fb.3 We find

〈L({n})〉SB = 6.2 , trimming + pruning . (2.12)

This is a significant improvement on the log likelihood ratio that we obtained with either

trimming or pruning alone, eq. (2.11).

We can extend the analysis so as to display more information. The number of signal

events in each bin is a function sJ(m) of the top quark mass m that we use to calculate

the tt̄ signal cross section. Until now, we have taken m to be Mtop = 174 GeV. However,

we can let m vary. We consider the choices m = (145, 155, 165, 174, 185, 195, 205, 215)GeV.

For each choice, we construct L({n},m) according to eq. (2.9). Then, if we were to use

data for the number of events nJ in each bin, we would test not only whether the SB theory

is favored over just the B theory, but also which values of m are favored or disfavored by

the data. To display what can be expected on average, we show in figure 4 the expectation

value of L({n},m) in the SB theory with the true top quark mass, Mtop = 174 GeV. That

is,

〈L({n},m)〉SB =
∑

J

[
(sJ(Mtop) + bJ) log

(
1 +

sJ(m)

bJ

)
− sJ(m)

]
. (2.13)

The results are plotted in figure 4 as a function of m. We show the results for trimming

alone, pruning alone, and for trimming and pruning combined. We see that the SB theory

with m = Mtop is highly favored, with a stronger result obtained if we combine trimming

and pruning. We also see that the result using trimming and pruning combined is quite

sensitive to the value of m: m = Mtop is favored, whilem = 165 GeV and m = 185 GeV are

not favored. For these wrong values of m, 〈L({n},m)〉SB is close to 0. For m = 155 GeV

and m = 145 GeV, the signal + background theory with the wrong m is even weakly

disfavored compared to the background only theory.

One should not think that figure 4 is what data will look like. We plot the expectation

value of L({n},m), but the values of the counts nJ are subject to fluctuations. From

appendix A, the variance of L({n},m) is

〈
(L− 〈L〉SB)2

〉
SB

=
∑

J

(
bj + sJ(Mtop)

) [
log

(
1 +

sJ(m)

bJ

)]2
. (2.14)

Using the log likelihood results for trimming and pruning combined from figure 4, we plot

L± [
〈
(L− 〈L〉SB)2

〉
SB

]1/2 as an error band in figure 5. Then we display five sample curves

for L({n}) in which the counts nJ in the bins J are drawn from Poisson distributions

with mean sJ(Mtop) + bJ . We see that the SB theory with the right mass is generally

favored, but that it can be more or less favored depending on whether the counts in the

most important bins fluctuate up or down.

3The results are not sensitive to this cut, which we impose so that we can have a reliable calculation of

sJ/bJ .
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3 that contain a background cross section of at least 0.5 fb.3 We find

〈L({n})〉SB = 6.2 , trimming + pruning . (2.12)

This is a significant improvement on the log likelihood ratio that we obtained with either

trimming or pruning alone, eq. (2.11).

We can extend the analysis so as to display more information. The number of signal

events in each bin is a function sJ(m) of the top quark mass m that we use to calculate

the tt̄ signal cross section. Until now, we have taken m to be Mtop = 174 GeV. However,

we can let m vary. We consider the choices m = (145, 155, 165, 174, 185, 195, 205, 215)GeV.

For each choice, we construct L({n},m) according to eq. (2.9). Then, if we were to use

data for the number of events nJ in each bin, we would test not only whether the SB theory

is favored over just the B theory, but also which values of m are favored or disfavored by

the data. To display what can be expected on average, we show in figure 4 the expectation

value of L({n},m) in the SB theory with the true top quark mass, Mtop = 174 GeV. That

is,

〈L({n},m)〉SB =
∑

J

[
(sJ(Mtop) + bJ) log

(
1 +

sJ(m)

bJ

)
− sJ(m)

]
. (2.13)

The results are plotted in figure 4 as a function of m. We show the results for trimming

alone, pruning alone, and for trimming and pruning combined. We see that the SB theory

with m = Mtop is highly favored, with a stronger result obtained if we combine trimming

and pruning. We also see that the result using trimming and pruning combined is quite

sensitive to the value of m: m = Mtop is favored, whilem = 165 GeV and m = 185 GeV are

not favored. For these wrong values of m, 〈L({n},m)〉SB is close to 0. For m = 155 GeV

and m = 145 GeV, the signal + background theory with the wrong m is even weakly

disfavored compared to the background only theory.

One should not think that figure 4 is what data will look like. We plot the expectation

value of L({n},m), but the values of the counts nJ are subject to fluctuations. From

appendix A, the variance of L({n},m) is

〈
(L− 〈L〉SB)2

〉
SB

=
∑

J

(
bj + sJ(Mtop)

) [
log

(
1 +

sJ(m)

bJ

)]2
. (2.14)

Using the log likelihood results for trimming and pruning combined from figure 4, we plot

L± [
〈
(L− 〈L〉SB)2

〉
SB

]1/2 as an error band in figure 5. Then we display five sample curves

for L({n}) in which the counts nJ in the bins J are drawn from Poisson distributions

with mean sJ(Mtop) + bJ . We see that the SB theory with the right mass is generally

favored, but that it can be more or less favored depending on whether the counts in the

most important bins fluctuate up or down.

3The results are not sensitive to this cut, which we impose so that we can have a reliable calculation of

sJ/bJ .
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