Boosted Higgs search

Michael Spannowsky

ITS, University of Oregon

BOOST 2010 Oxford I Michael Spannowsky 24/06/2010

Basic idea of subjet analysis

BOOST 2010

Oxford

2

Result for ZH and WH combined:

Confirmed by ATLAS analysis with only slightly smaller significance [ATL-PHYS-PUB-2009-088, G. Piacquadio]

3

BOOST 2010

Oxford

Michael Spannowsky

Further techniques for jet grooming

Pruning

[PRD 80 (2009), S.Ellis, Vermilion and Walsh]

• Run CA or kT algorithm on constituents of found jet (large cone: R). At each recombination $i, j \rightarrow p$ test if:

$$z = rac{\min(p_{T_i}, p_{T_j})}{p_{T_p}} < z_{ ext{cut}}$$
 and $\Delta R_{ij} > D_{ ext{cut}}$

- If both conditions are full-filled,
 veto on the recombination discard
 the lower pT daughter and
 continue.
- The resulting jet is the new (pruned) jet

Trimming

[JHEP 1002 (2010), Krohn, Thaler and Wang]

- Run a jet algorithm (kT) on a found jet (Anti-kT, large cone R), with Rsub smaller than R
- ullet Discard all subjets with $\,p_T = f_{
 m cut} \Lambda$
- Remaining subjets from the new (trimmed) jet

Pruning vs Trimming

David Krohn's conclusion at the Workshop in Seattle:

- * Trimming and Pruning are complementary techniques:
 - Trimming is for QCD jets, Pruning for boosted heavy objects

http://silicon.phys.washington.edu/JetsWorkshop/Krohn.pdf

BOOST 2010 Oxford 5 Michael Spannowsky 24/06/2010

Pruning vs Trimming

David Krohn's conclusion at the Workshop in Seattle:

- * Trimming and Pruning are complementary techniques:
 - Trimming is for QCD jets, Pruning for boosted heavy objects

http://silicon.phys.washington.edu/JetsWorkshop/Krohn.pdf

Both do their job but differently

Use it!

BOOST 2010 Oxford 5 Michael Spannowsky 24/06/2010

What happens if we run Pruning and Trimming simultaneously?

Combine Pruning, Trimming and Mass-Drop/Filtering

[Soper, MS, 1005.0417]

Run BDRS analysis for ZH production Apply pruning and trimming on Higgs candidate

'Optimize' procedure

BOOST 2010 Oxford 8 Michael Spannowsky 24/06/2010

Exploitation of asymmetry

Cut based approach

Exp. Likelihood Ratio
$$\langle \mathcal{L}(\{n\})\rangle_{\mathrm{SB}} = \sum_J \left[(s_J + b_J) \log \left(1 + \frac{s_J}{b_J} \right) - s_J \right]$$

	$M_{ m Jet}^{(f)} \in W_f$	$M_{\text{Jet}}^{(f)} \in W_f$ $M_{\text{Jet}}^{(t)} \in W_t$	$M_{\text{Jet}}^{(f)} \in W_f$ $M_{\text{Jet}}^{(p)} \in W_p$	$M_{\text{Jet}}^{(p)} \in W_p$ $M_{\text{Jet}}^{(t)} \in W_t$	$M_{\text{Jet}}^{(p)} \in W_p$ $M_{\text{Jet}}^{(t)} \in W_t$
Signal cross section [fb]	0.20	0.18	0.17	0.17	0.16
Backgrnd cross section [fb]	0.30	0.20	0.17	0.16	0.13
s/b	0.67	0.90	1.0	1.1	1.3
s/\sqrt{b} $(\int dL = 30 \text{ fb}^{-1})$	2.0	2.2	2.3	2.3	2.4
$\langle \mathcal{L}(n) \rangle_{\rm SB} \ (\int dL = 30 \text{ fb}^{-1})$	1.7	1.9	2.0	2.1	2.2

Z=0.1 Z=0.05

BOOST 2010

Oxford

9

Michael Spannowsky

Exploitation of asymmetry

Cut based approach

Exp. Likelihood Ratio
$$\langle \mathcal{L}(\{n\})\rangle_{\mathrm{SB}} = \sum_J \left[(s_J + b_J) \log \left(1 + \frac{s_J}{b_J} \right) - s_J \right]$$

	$M_{\mathrm{Jet}}^{(f)} \in W_f$	$M_{\text{Jet}}^{(f)} \in W_f$ $M_{\text{Jet}}^{(t)} \in W_t$	$M_{\text{Jet}}^{(f)} \in W_f$ $M_{\text{Jet}}^{(p)} \in W_p$	$M_{\text{Jet}}^{(p)} \in W_p$ $M_{\text{Jet}}^{(t)} \in W_t$	$M_{\text{Jet}}^{(p)} \in W_p$ $M_{\text{Jet}}^{(t)} \in W_t$
Signal cross section [fb]	0.20	0.18	0.17	0.17	0.16
Backgrnd cross section [fb]	0.30	0.20	0.17	0.16	0.13
s/b	0.67	0.90	1.0	1.1	1.3
$s/\sqrt{b} (\int dL = 30 \text{ fb}^{-1})$	2.0	2.2	2.3	2.3	2.4
$\langle \mathcal{L}(n) \rangle_{\rm SB} \ (\int dL = 30 \text{ fb}^{-1})$	1.7	1.9	2.0	2.1	2.2

Z=0.1 Z=0.05

BOOST 2010

Oxford

9

Michael Spannowsky

Exploitation of asymmetry

Cut based approach

Exp. Likelihood Ratio
$$\langle \mathcal{L}(\{n\})\rangle_{\mathrm{SB}} = \sum_J \left[(s_J + b_J) \log \left(1 + \frac{s_J}{b_J} \right) - s_J \right]$$

	$M_{\mathrm{Jet}}^{(f)} \in W_f$	$M_{\text{Jet}}^{(f)} \in W_f$ $M_{\text{Jet}}^{(t)} \in W_t$	$M_{\text{Jet}}^{(f)} \in W_f$ $M_{\text{Jet}}^{(p)} \in W_p$	$M_{\text{Jet}}^{(p)} \in W_p$ $M_{\text{Jet}}^{(t)} \in W_t$	$M_{\text{Jet}}^{(p)} \in W_p$ $M_{\text{Jet}}^{(t)} \in W_t$
Signal cross section [fb]	0.20	0.18	0.17	0.17	0.16
Backgrnd cross section [fb]	0.30	0.20	0.17	0.16	0.13
s/b	0.67	0.90	1.0	1.1	1.3
s/\sqrt{b} $(\int dL = 30 \text{ fb}^{-1})$	2.0	2.2	2.3	2.3	2.4
$\langle \mathcal{L}(n) \rangle_{\text{SB}} \ (\int dL = 30 \text{ fb}^{-1})$	1.7	1.9	2.0	2.1	2.2

Z=0.1 Z=0.05

BOOST 2010

Oxford

9

Michael Spannowsky

Stronger as a team

Filtering

Trimming

Pruning

Pruning

Trimming

Filtering

Generic resonance tagger should run comb. of procedures Maybe we can gain insight to improve on subjet procedures

BOOST 2010

Brief summary of tth

[Plehn, Salam, MS, PRL 104 2010]

Motivation:

- sizable cross-section
- Higgs discovery contribution in low mass range
- access to t- and b-Yukawa couplings

High expectations:

BOOST 2010

Oxford

П

Michael Spannowsky

Boosted scenario should help!

Only 2 or 3 b in one cone reduces combinatorics

BOOST 2010

Oxford

12

Michael Spannowsky

Nasty backgrounds.....

tth (Signal)

Beenakker et al.,
PRL 87 2001;
Reina et al.,
PRD 65 2002

→ K=1.57

ttbb

Bredenstein et al., PRL 103 2009; Belivacqua et al., JHEP 0909 2009

► K=2.3

tt+jets

Dittmaier et al, PRL 98 2007 Bevilacqua et al., PRL 104 2010

► K=1.0

ttz

Lazopoulos et al., PLB 666 2008

→ k=1.53

w+jets

negligible after b-tags and taggers

BOOST 2010

Oxford

13

Michael Spannowsky

Results

for 100 1/fb

with 2 b-tags

$$S[fb^{-1}]$$
 $B[fb^{-1}]$
 S/B
 S/\sqrt{B}
 $m_H = 115 \text{ GeV}$
 1.2
 3.8
 $1/3.2$
 6.2
 120 GeV
 1.0
 3.8
 $1/3.8$
 5.1
 130 GeV
 0.51
 3.3
 $1/6.5$
 2.8

- → tremendous improvement on S/B in tth
- → tth might contribute to Higgs discovery
- → tth might be a window to Higgs-top coupling

BOOST 2010 Oxford 15 Michael Spannowsky 24/06/2010

Backup

BOOST 2010 Oxford 16 Michael Spannowsky 24/06/2010

Pruning vs Trimming for same fat-jet definition

fat jet definition: CA pruning definition: CA

trimming definition: kT

fat jet definition: anti-kT pruning definition: CA trimming definition: kT

BOOST 2010

Oxford

17

Michael Spannowsky

Pruning and Trimming using CA

BOOST 2010 Oxford 18 Michael Spannowsky 24/06/2010

Log Likelihood Ratio

Poisson distributions for background and signal + background:

$$P_{\rm B}(\{n\}) = \prod_{J} \frac{1}{n_J!} (b_J)^{n_J} e^{-b_J} \qquad P_{\rm SB}(\{n\}) = \prod_{J} \frac{1}{n_J!} (b_J + s_J)^{n_J} e^{-b_J - s_J}$$

Likelihood ratio

$$R(\{n\}) = \frac{P_{SB}(\{n\})}{P_{B}(\{n\})}$$

$$R(\{n\}) = \frac{P_{\text{SB}}(\{n\})}{P_{\text{R}}(\{n\})}$$
 $R(\{n\}) = \exp \mathcal{L}(\{n\})$

Log Likelihood ratio

$$\mathcal{L}(\lbrace n \rbrace) = \sum_{J} [n_J \log(1 + s_J/b_J) - s_J]$$

Exp. Log Likelihood ratio
$$\langle \mathcal{L}(\{n\}) \rangle_{\mathrm{SB}} = \sum_{J} \left[(s_J + b_J) \log \left(1 + \frac{s_J}{b_J} \right) - s_J \right]$$

Variance
$$\langle (\mathcal{L} - \langle \mathcal{L} \rangle_{\mathrm{SB}})^2 \rangle_{\mathrm{SB}} = \sum_J \left(b_j + s_J(M_{\mathrm{top}}) \right) \left[\log \left(1 + \frac{s_J(m)}{b_J} \right) \right]^2$$
 plotted $\mathcal{L} \pm \left[\left\langle (\mathcal{L} - \langle \mathcal{L} \rangle_{\mathrm{SB}})^2 \right\rangle_{\mathrm{SB}} \right]^{1/2}$

BOOST 2010

Oxford

20

Michael Spannowsky