

Searches for Leptonic Jets at DO

Andy Haas
Columbia University / SLAC

H_D

BOOST 2010 Workshop June 24, 2010 Oxford, UK

*New preliminary results for this workshop... note available shortly!

Where to find I-jets

- Direct dark-photon production
 - "Guaranteed", if dark sector exists
 - Low cross-section, depends on "ε", soft I-jets
- Decays of Z/h \rightarrow 2 l-jet i.e. $Z \rightarrow \gamma_D H_D$
 - Rate depends on ε , and we know it's small
 - But could hope to reconstruct Z,h peak
- SUSY SMLSP → I-jet
 - Rate could be large! No ε!
 - At least 2 1-jets per event
 - Also get large MET
 - But need low-mass SUSY to be real

Thanks to BOOST '09!

Focus on SUSY case first - uses strengths of Tevatron

Tevatron Performance

- Stores typically start at >350/ub/s
- (LHC record: ~0.2/ub/s ... but improving fast, ~1/ub/s soon)

Tevatron Performance

Decays to the dark side

- For a benchmark, use GMSB SPS8 point, $\sigma = 20 \text{fb}$
 - Kinematics do not change much for other similar SUSY points
- All SM LSPs decay to 1-jet
- Focus on simpler case of dark photon + darkino (MET) first

Dark Photon Decays

- BR(e)=BR(μ), except below 2m_μ
- Depends on "R", well-measured at e⁺e⁻ colliders
- BR to pions is large near hadronic resonances
- We study a range of dark photon masses from 0.15 to 2.0 GeV

L-jet Identification

"Electron I-jet" EM cluster, $p_{T}>15$ GeV Matched to $p_{T}>10$ GeV track

"Muon I-jet"

3 hit track in muon system

Matched to p_>10 GeV track

L-jet Isolation

- Need isolation to separate from huge QCD background
- But keep isolation loose enough to not kill possible signals!
 - May have many more tracks, be wider from radiation, etc...

Track isolation < 2 GeV, in 0.2 < dR < 0.4

Muon isolation in calorimeter < .066*pT+2.35 GeV dR<0.4 and dR>0.1 of either muon or companion track

Electron isolation in calorimeter < .085*pT-.53 0.2<dR<0.4 in EM layers and dR<0.4 in hadronic layers (corrected for underlying event and pileup at high luminosity)

Isolation cuts are functions of l-jet pT so not to bias MET measurement

Two L-jet Data Sample

Look at MET distribution (not μ corrected - calorimeter only)

Compare data to non-isolated background scaled to data for MET<15 GeV

- Normalization uncertainty from statistics &

Systematics on the background shape are determined from changes in the MET shape when just one or the other I-jet is non-isolated

Signal MC has large MET

Require MET > 30 GeV

Resonance Search

For events with 2 isolated 1-jets and MET>30 GeV, look for resonance in track / companion track mass

Background estimated from isolated di-l-jet sample with MET<20 GeV

BR's, mass windows:

$m(\gamma_D)$ (GeV)	$BR(ee)(\mu\mu)$	M_{reco}^{low} - M_{reco}^{high} (GeV)	Eff. e	Eff. μ
0.15	1 0	0.0 - 0.3	0.81	-
0.3	$0.53\ 0.47$	0.1 - 0.4	0.82	0.88
0.5	$0.4 \ 0.4$	0.3 - 0.6	0.81	0.89
0.7	$0.15\ 0.15$	0.4 - 0.8	0.85	0.89
0.9	$0.27\ 0.27$	0.6 - 1.1	0.82	0.91
1.3	$0.31\ 0.31$	0.9 - 1.4	0.72	0.79
1.7	$0.22\ 0.22$	1.0 - 1.8	0.73	0.76
2.0	$0.24\ 0.24$	1.3 - 2.2	0.73	0.83
	·			

Results

- Calculate limits using Bayesian
- Systematics
 - Signal efficiency, 20%
 - Background normalization, 20-50%
 - Luminosity, 6.1%
- Limit for all channels combined corrects for SPS8 acceptance

Channel	Data	Background	SPS8 Acc.	Reco. eff.	Total eff.
ee	7	10.2 ± 1.7	0.45	0.20	8.9~%
$e\mu$	11	17.5 ± 4.2	0.53	0.15	7.8~%
$\mu\mu$	3	8.6 ± 4.5	0.50	0.12	5.8~%

- Rules out SPS8 for decays to l-jets for some masses
 - Would also rule out other SUSY points with lighter chargino / neutralino or strong production

More complicated dark sector

Studied using MC simulation only

- a) Additional dark radiation / showers
 - · Adds additional tracks, hadronic E
 - Raising dark coupling from 0 → 0.3 decreases efficiency by up to 20%
 - Independent of dark photon mass

- b) Decays to dark Higgs
 - Gives softer leptons
 - Up to 50% lower efficiency, for large dark photon mass

Summary

- First search for two I-jets + MET at a hadron collider
 - Studied both electron and muon l-jets (ee, emu, mumu)
- No excess seen over background at large MET
- No sign of a resonance in the high (or low) MET I-jet mass
- Rules out scenarios with light SUSY particles decaying to l-jets
 - Also sensitive to more complicated dark-sector decays/showers

Thanks also to participants of BOOST '09 and

A. Falkowski, J. Ruderman, M. Strassler,

S. Thomas, I. Yavin, and J. Wacker

Backup

MC Signal Event

Two electron I-jets with large ME_{T}

Run 248074 Evt 24810582 Wed Dec 17 03:49:03 2008

Run 248074 Evt 24810582 Wed Dec 17 03:49:03 2008

Searches for Higgs → Leptonic Jets

- Leptonic jets could also hide the Higgs
- Not searched for generically at colliders (yet!)
- Narrow jets of leptons (and pions maybe)
- Probably some ME_T
- Probably resonances of l+l- pairs inside jets

Adam Falkowski, Joshua T. Ruderman, Tomer Volansky, Jure Zupan arXiv:1002.2952

