

A study of boosted $Z^0 \rightarrow e^+e^-$ signatures at CMS

James Jackson Rutherford Appleton Laboratory

Boost 2010, Oxford 24-06-2010

CMS

- One of 2 general purpose LHC detectors
- Main features:
 - 3.8T solenoidal magnet
 - Tracking up to $|\eta| = 2.5$
 - Calorimetry up to $|\eta| = 3$ (Forward hadronic up to 5.2)
 - Muon systems up to $|\eta| = 2.4$
 - Level-1 trigger relies on coarse calorimetry + muon systems
 - High Level Trigger adds tracking information and fine grain calorimetry / muon information

Analysis introduction

- Aim is to produce a model independent search for new heavy resonances decaying to Z⁰ + X
- Use a reference excited quark model to benchmark the analysis
- Excited fermions are taken to be spin 1/2, isospin 1/2 partners, assumed to acquire a mass before EWK symmetry breaking. The matter content becomes:

$$l_{L} \equiv \begin{pmatrix} v_{e} \\ e \end{pmatrix}_{L}, \quad l_{R} \equiv e_{R}; \quad l_{L}^{*} \equiv \begin{pmatrix} v_{e}^{*} \\ e^{*} \end{pmatrix}_{L}, \quad l_{R}^{*} \equiv \begin{pmatrix} v_{e}^{*} \\ e^{*} \end{pmatrix}_{R}$$

$$q_{L} \equiv \begin{pmatrix} u \\ d \end{pmatrix}_{L}, \quad q_{R} \equiv u_{R}, d_{R}; \quad q_{L}^{*} \equiv \begin{pmatrix} u^{*} \\ d^{*} \end{pmatrix}_{L}, \quad q_{R}^{*} \equiv \begin{pmatrix} u^{*} \\ d^{*} \end{pmatrix}_{R}$$

 Transitions between SM and excited fermion states are given by:

$$\mathcal{L}_{\text{eff}}^2 = \frac{1}{2\Lambda} \bar{f}_R^* \sigma^{\mu\nu} \left(f_s g_s \frac{\lambda^a}{2} G_{\mu\nu}^a + f g \frac{\tau^a}{2} W_{\mu\nu}^a + f' g' \frac{\mathbf{Y}}{2} B_{\mu\nu} \right) f_L$$

• Use the choice $f_s = f = f = 1$, and set $\Lambda = m_{q^*}$

Note that this is a thesis analysis, and not an official CMS result

Close electron reconstruction

- Z decay electrons can become very close in the calorimeter - ~0.1 rad for M_X > 2 TeV
- This causes a problem due to Bremsstrahlung recovery algorithms at the SuperClustering stage
- Clusters from electrons which are close and aligned in phi are combined into one SuperCluster
- Modified algorithm:
 - Run FixedMatrix5x5 clustering algorithm in EB (currently only run in EE) to avoid a BasicCluster merging the two clusters
 - Promote all BasicClusters to SuperClusters (with 15 GeT Et cut)
 - Re-run GSF electron reconstruction with new SuperCluster collections

Close electron reconstruction

- Performance with new algorithm shows good improvement at high γ_Z
- Some loss in efficiency at low γ_Z due to lack of Bremsstrahlung recovery
- Need to check this is limited to low Pt

Quantification of energy loss

- Z peak shows low sideband behavior typical of missing energy (due to Bremsstrahlung photons not included)
- First check this is limited to low pt electrons by imposing pair pt cut. Sideband behaviour restored
- Cross-check by (from simulation) calculation fractional energy loss for electrons - dominates in the barrel to endcap transition region around E = 100 GeV

Electron selection

Barrel HEEP selection performance

Cut	1 TeV	1.25 TeV	1.5 TeV	1.75 TeV	2 TeV
E_t	0.96	0.97	0.98	0.98	0.98
$ \eta_{ m SC} $	0.98	0.99	0.99	0.99	0.99
$ \Delta\eta_{ m in} $	0.99	0.99	0.99	0.99	0.99
$ \Delta\phi_{ m in} $	1.00	1.00	1.00	0.99	1.00
H/E	0.99	0.99	0.99	0.99	0.99
$E^{2\times5}/E^{5\times5}$	0.96	0.96	0.96	0.96	0.97
EM + Had D1 Isolation	0.90	0.7	0.57	0.45	0.36
Track p_t Isolation	0.96	0.89	0.71	0.56	0.46

Endcap HEEP selection performance

Cut	1 TeV	1.25 TeV	1.5 TeV	1.75 TeV	2 TeV
E_t	0.96	0.96	0.96	0.97	0.97
$ \eta_{ m SC} $	0.93	0.92	0.92	0.92	0.92
$ \Delta\eta_{ m in} $	0.98	0.99	0.99	0.99	0.99
$ \Delta\phi_{ m in} $	1.00	1.00	1.00	1.00	1.00
H/E	0.99	0.99	0.99	0.99	0.99
$\sigma_{\mathrm{i}\eta\mathrm{i}\eta}$	1.00	0.99	0.99	0.99	0.99
EM + Had D1 Isolation	0.96	0.93	0.87	0.83	0.79
Had D2 Isolation	0.97	0.97	0.97	0.97	0.96
Track p_t Isolation	0.99	0.98	0.94	0.90	0.88

Original HEEP selection performance

m_{u^*} (TeV)	Efficiency
1	0.676 ± 0.004
1.25	0.566 ± 0.004
1.5	0.434 ± 0.004
1.75	0.332 ± 0.003
2.0	0.264 ± 0.002

Modified HEEP selection performance

m_{u^*} (TeV)	Efficiency
1	0.797 ± 0.005
1.25	0.823 ± 0.005
1.5	0.842 ± 0.006
1.75	0.853 ± 0.006
2.0	0.864 ± 0.005

• EM + Had Depth 1 and Track pt isolation cuts perform badly - these are removed to give the modified HEEP selection

All efficiencies measured from data with Tag+Probe

- Backgrounds estimated with simple sideband counting technique
- All efficiencies > 95%
 after turn on regions

Background estimation

- After all event selection cuts are applied, there are three backgrounds to be individually estimated
 - X + Jets
 - Estimate with the fake-rate method
 - tt
 - Estimate with the b-tagging method
 - SM Z→e+e-
 - Estimate from MC or W from data
- Estimations are not used by statistical tools, but to check that the sample is understood and under control

Combination of background estimations

• The combination is shown for 200 pb⁻¹ psuedo-experiments with and without a 1 TeV u*

Determining signal significance

- Given some set of data, is there an excess, and at what significance?
- ullet Take the hypothesis that background follows the functional form $e^{-\alpha p_t}p_t^{-eta}$
- Run a fit (RooFit) to this PDF in the range 100-1000 GeV
- Use result of the fit to construct background hypothesis histogram with same binning as data
- Compute the probability that the contents of each bin±1 (sliding window of 60 GeV) are due to a
 Poisson fluctuation (p(N >= obs)) around the background (use -log₁₀(p) for convenience)

What does $p_{BG} = 10^{-8.1}$ mean?

- With an experiment p-value at hand, need to determine if it is significant
- Look-elsewhere effect, or likelihood of same significance occurring due to BG fluctuations anywhere in the search region, to take into account the many correlated p-value measurements
- For a given integrated luminosity, run 1B background only pseudo-experiments, where bin contents are allowed to vary following Poisson statistics
- For each experiment, run a scan to determine the minimum p-value
- Histogram as a function of -log₁₀(p), and construct a weighted mean to determine the most likely p-value from background fluctuations

$$p_{\text{likely}} = \frac{1}{\sum_{m=0}^{N} B(m)} \sum_{n=0}^{N} B(n) M(n)$$

3σ (evidence) and 5σ (discovery) limits are then determined by finding the p-value for which 0.14% and 2.87 x 10⁻⁵% of the experiments have the expected p-value or less (use 100k bins)

Search reach determination

- With the ability to compute 3σ and 5σ p-value limits for BG exclusion, a method is required to calculate the most likely p-value a signal + BG experiment will have for a given luminosity
- Throw 10k pseudo-experiments from the S+BG PDF
 - Run the BG fit, determine minimum p-value found, and histogram them
- Construct the weighted mean, as before, to determine the most-likely p-value for the luminosity and mass
- Plot as a function of luminosity; intersection with BG curves show evidence / discovery potential

Measured systematic uncertainties

Table 32: Combination of systematic uncertainties to maximise search reach

Channel	p.d.f. uncert.	p.d.f. choice	μ scale	Ele. ID	Cal. & Align.	Combination
Di-boson	-5%	-4.5%	-2%	-5%	-2.5%	-11%
$t\bar{t}$ + Jets	-5%	-5.5%	-13%	-5%	-2.5%	-18%
W + Jets	-5%	-5%	-2%	-5%	-2.5%	-12%
Z + Jets	-5%	-3.5%	-6%	-5%	-2.5%	-12%
$\gamma + \mathrm{Jets}$	-5%	-10%	-6%	-5%	-2.5%	-17%
u* (1 TeV)	+3%	+3%	+10%	0%	0%	+12%
u* (1.25 TeV)	+4.8%	+4%	+10%	0%	0%	+13%
u* (1.5 TeV)	+6.5%	+4.5%	+10%	0%	0%	+15%
u* (1.75 TeV)	+8.3%	+4.5%	+10%	0%	0%	+16%
u* (2 TeV)	+10%	+4.5%	+10%	0%	0%	+18%

Table 33: Combination of systematic uncertainties to minimise search reach

Channel	p.d.f. uncert.	p.d.f. choice	μ scale	Ele. ID	Cal. & Align.	Combination
Di-boson	+5%	+4.5%	+2%	0%	0%	+9%
$t\bar{t}$ + Jets	+5%	+5.5%	+14%	0%	0%	+18%
W + Jets	+5%	+5%	+2%	0%	0%	+10%
Z + Jets	+5%	+3.5%	+4%	0%	0%	+9%
$\gamma + \mathrm{Jets}$	+5%	+10%	+1%	0%	0%	+15%
u* (1 TeV)	-3%	-3%	-8%	-5%	-2.5%	-11%
u* (1.25 TeV)	-4.8%	-4%	-7%	-5%	-2.5%	-13%
u* (1.5 TeV)	-6.5%	-4.5%	-8%	-5%	-2.5%	-15%
u* (1.75 TeV)	-8.3%	-4.5%	-8%	-5%	-2.5%	-16%
u* (2 TeV)	-10%	-4.5%	-8%	-5%	-2.5%	-17%

Final search reach with systematics

Final search reach with systematics

- Plots determined from intersection of signal and background curves on previous slide
- For 1 TeV u* with input model assumptions, 3σ evidence could be found with 200 pb⁻¹ of integrated luminosity, and 5σ with 500 pb⁻¹ at sqrt(s) = 10 TeV

Bonus slide - Boosted W±→e±v

- Missing E_t will be strongly correlated with the boost direction.
 Reconstruct the neutrino three-vector in the collinear approximation
- The electron-neutrino invariant mass is then plotted against the opening angle in phi between the electron and missing E_t

$$ec{p}_{
u_e} = (
ot\!\!\!/_x,
ot\!\!\!/_y, \frac{\sqrt{
ot\!\!\!/_x^2 +
ot\!\!\!/_y^2}}{\sqrt{p_{x,e}^2 + p_{y,e}^2}} p_{z,e})$$

BACKUP

Electron selection

- Aim to follow the HEEP high energy electron selection as closely as possible
 - Shared code, efficiencies, commissioning etc

Variable	Barrel	Endcap
E_t	> 25 GeV	> 25 GeV
$ \eta_{ m SC} $	< 1.422	$1.560 < \eta_{\rm SC} < 2.5$
$ \Delta\eta_{ m in} $	< 0.005	< 0.007
$ \Delta\phi_{ m in} $	$< 0.09 \mathrm{rad}$	< 0.09 rad
H/E	< 0.05	< 0.05
$\sigma_{\mathrm{i}\eta\mathrm{i}\eta}$	n/a	< 0.0275
$E^{2\times 5}/E^{5\times 5}$	$> 0.94 \text{ OR } E^{1\times5}/E^{5\times5} > 0.83$	n/a
EM + Had Depth 1	$< 3 + 0.002E_t \text{GeV}$	$< 5.5 \mathrm{GeV}$ for $E_t < 50 \mathrm{GeV}$ else
Isolation		$< 5.5 + 0.05(E_t - 50) \mathrm{GeV}$
Had Depth 2 Isolation	n/a	< 0.5 GeV
Track p_t Isolation	< 7.5 GeV	< 15 GeV

• The performance of the cuts was measured by defining the event selection efficiency as

$$\epsilon_E = \frac{\text{Events with} \ge 2 \text{ fiducial electrons passing HEEP cuts}}{\text{Total number of events with} \ge 2 \text{ fiducial electrons}}$$

• Each individual efficiency was measured by matching reconstructed electrons to MC truth ($\Delta R < 0.1$), and measuring each cut individually

Jet backgrounds with the fake rate method

- Make use of the fact that events with one selected electron are more likely than those with two
- Two stage method:
 - Use a sample unbiased with respect to the signal selection to measure the probability that a jet fakes a signal electron
 - Apply this probability to all the jets in an event with only one reconstructed signal electron to estimate the background
- The unbiased sample is selected with jet triggers, taken from 1E31 v0.6 menu. To make use of the available QCD samples, a pseudo-HLT reweighting scheme was used. Each event was scaled by the inverse of the trigger prescale, to allow all events to be used
- 'Jets' are defined as loosely selected GSF electrons. This removes the requirement of a jet scale correction step. The ΔR cut further removes any trigger bias

Jet triggers used (1E31 v0.6 menu)

Trigger	L1 Prescale	HLT Prescale	Total Prescale
Jet30	1000	5	5000
Jet50	100	2	200
Jet80	10	2	20
Jet110	1	_1_	\ \1

Loose electron selection

Cut	Value
$\Delta R(\text{Trig.,Cand.})$	> 0.2
$ \eta $	< 2.5
E_t	> 20 GeV
Had / EM	< 0.2

Tight electron selection

Cut	Value
$\Delta R(\text{Trig.,Cand.})$	> 0.2
$ \eta $	< 2.5
E_t	> 20 GeV
Modified HEEP selection cuts	Must pass

Jet backgrounds with the fake rate method

Jet backgrounds with the fake rate method

- For all events in the signal trigger set, the highest Et electron is taken as the triggered lepton, and must pass the tight selection criteria
- All other objects passing the loose electron selection, but not the tight selection (to remove signal bias), are histogrammed by trigger-fake pair p_t, weighted according to the fake rate given by the loose object
- Pairs are excluded if they lie in the range 70 < M < 110 GeV $N(p_t) = \sum_{\text{loose}} w_e \frac{F(E_t)}{1 F(E_t)}$ to further remove signal contamination

tt with the b-tagging method

- The b-tagging method is robust against b-tagging commissioning, and can be applied on top of the existing event selection
- The observed number of events with exactly one and two b tags are given by n₁ and n₂. These are related to the actual number of events (N₁, N₂) within detector acceptance by

$$n_1 = N_1 \epsilon_b + 2N_2 \epsilon_b (1 - \epsilon_b)$$

$$n_2 = N_2 \epsilon_b^2,$$

• where ε_b is the b-tagging efficiency. N₁ and N₂ are related to the true number of tt events by

$$N_1 = NA_1$$

$$N_2 = NA_2$$

• Where A₁ (A₂) is the geometric acceptance for events containing exactly 1 (2) b jets from a tt event. From these expressions, and A₁ (A₂) measured from MC, ε_b can be determined as

$$\epsilon_b = \frac{A_1/A_2 + 2}{n_1/n_2 + 2}$$

- With this measurements performed, N can be calculated from either the n₁ or n₂ samples as:
- To ensure the samples are of equivalent purity, a tight selection is defined which vetoes events with 70 < M < 110 GeV

$$N = \frac{n_1}{\epsilon_b (A_1 + 2A_2(1 - \epsilon_b))},$$

$$N = \frac{n_2}{A_2 \epsilon_b^2}.$$

tt with the b-tagging method

• From MC, $A_1 = 0.146 \pm 0.005$, $A_2 = 0.79 \pm 0.01$

Jet selection criteria

Jet Algorithm	iterativeCone5CaloJets
Jet E_t	> 20 GeV
Jet η	< 2.4
B Discriminant	jetBProbabilityJetTags
Discriminant cut	> 4.0

tt with the b-tagging method

Measured b-tagging efficiency

Data sample	Efficiency
$t\bar{t}$ only	0.377 ± 0.058
$t\bar{t}$ only (tight)	0.382 ± 0.067
Realistic (tight)	0.356 ± 0.062

Total number of estimated tt events

Data sample	Events with $70 < M_{ee} < 110(GeV)$
$t\bar{t}$ true	378
$t\bar{t}$ only (n_1)	374 ± 95
$t\bar{t}$ only (n_2)	381 ± 101
Realistic (n_1)	428 ± 119
Realistic (n_2)	428 ± 124

Z→e+e- with W hadronic recoil

- The irreducible Z→ee background can be estimated from MC, but this requires complete understanding of the simulation in the region where new physics is expected
- In the kinematic region above the W and Z masses, the W and Z can be considered to have identical production kinematics. The W cross section is ~3 times that of the Z, and the branching ratio W→ev is ~3 times that of Z→ee, a factor of 10 more W than Z events are expected
- By computing the pt of the hadronic recoil system, the pt of the W can be determined, and therefore an estimate of the Z pt spectrum can be computed, given a suitable normalisation (taken to be the region 150 - 250 GeV to minimise the QCD di-jet influence)
- Event are selected with one well isolated (passing the full HEEP selection) electron
- The four-vectors of all jets which are separated ($\Delta R > 0.4$) from the electron, and with loose selection cuts (E_t > 20 GeV, $|\eta| < 2.5$) are summed, and the p_t of the resulting four-vector determined
- As a cross-check, the hadronic recoil pt of events containing two selected electrons can be computed. This also allows a check of the jet energy scale, and an appropriate correction to be derived if required
- New physics coupling to Z would also be expected to couple to W may force use of MC.
 However, some discriminating power is available using W mass and electron / neutrino phi separation

Z→e+e- with W hadronic recoil

Control of backgrounds

Discriminating signal / background W[±]

- For a boosted W, the missing E_t will be strongly correlated with the boost direction. Use this to reconstruct the neutrino three-vector in the collinear approximation
- ullet The electron-neutrino invariant mass is then plotted against the opening angle in phi between the electron and missing E_t

 $ec{p}_{v_e} = (\not \!\! E_x, \not \!\! E_y, rac{\sqrt{\not \!\! E_x^2 + \not \!\! E_y^2}}{\sqrt{p_{x,e}^2 + p_{y,e}^2}} p_{z,e})$

14 TeV analysis potential

- Signal + BG yields scaled for parton luminosities at 14 TeV
- Statistical tool re-run on scaled datasets
- Systematics not considered
- Shows well-behaved scaling with change in parton lumis

u* mass (TeV)