Searching for the Dark Sector at Neutrino Experiments

Joshua Berger University of Pittsburgh

JB, Y. Cui, Y. Zhao: JCAP1502 (2015) no.02,005 JB: 1812.05616 JB, Convery, Cui, Graham, Necib, Petrillo, Stocks, Tsai, Zhao: In Progress (DUNE TDR) Batell, JB, Ismail: 1905.xxxxx

May 22, 2019

SUSY 2019

Beyond the Minimal WIMP

- Spin-dependent interactions dominate
- Velocity suppression at low v
- ▶ Non-SM annihilation modes
- Non-minimal stabilization symmetry
- Multi-component DM sector: Portal Mediators
- ► High(er) velocity flux: Boosted Dark Matter

Where can we look?

- Boosted dark matter:
 - Higher threshold OK
 - Need large size

- Dark sector mediators:
 - Need high intensity

Simple BDM models exist

Two component Dark Matter

 $v \approx 0.6$

 $v = \sqrt{1 - m_B^2 / m_A^2}$

Annihilation: $A N^2 = C - E N$

Sun

Annihilation: $A N^2 = C - E N$

Sun

Rescattering: Generally negligible

......

DM

Detector Interactions: A New Tool

- Elastic scattering off free nucleons analytically calculable
- ▶ Nuclear physics at scale 250 MeV
- ▶ DIS above scale 2 GeV
- ▶ New Monte Carlo tool as part of GENIE

Three different processes

Rein & Sehgal: Ann. Phys. 133, 79 (1981)

Current Status of BDM in GENIE

- \checkmark Fermion or scalar DM, arbitrary Z' coupling
- Elastic, DIS and electron scattering implemented
- ✓ Framework mostly set for further models
- ✓ Integrated into GENIE v3

Looking with water Čerenkov

Physical energy threshold: $E_{K,recoil} = 480 \text{ MeV}$

Hard to reconstruct inelastic

Experiments: Super-Kamiokande Hyper-Kamiokande Super-Kamiokande: PRD79 (2009) 112010

A future in liquid argon TPCs

Threshold: $E_{K,recoil} \lesssim$ 50 MeV

Inelastic reconstruction possible

Experiments

LArIAT, MicroBooNE ArgoNeuT, ProtoDUNE SBND, ICARUS DUNE

Yellow captions from talk by Luo

Angular Distribution (Total *P***)**

Angular Distribution (Total *P***)**

Preliminary Results

- Super-Kamiokande: 22.5kt fiducial volume, 6 yrs
- ▶ No angular cut to reduce atmo bkg for Super-K
- ▶ Efficiency (resolution, other FS particles)?

Higgs Portal Model

 $\mathcal{L} = \delta |H|^2 S$

Simple model: Only two new parameters– M_S and θ_S

Higgs Portal Model

$$heta_S \, pprox \, rac{\delta \, v}{2 \, M_h^2} \ll 1$$

Simple model: Only two new parameters– M_S and θ_S

Probing the Higgs Portal

Larger θ_S

Lab-produced meson decay

K, B----- \$

Smaller θ_S

Cosmology & Astrophysics

SN Cooling

Spallation/charge exchange during BBN

EM energy during recomb.

Beam Properties

Beam	BNB	NuMI
Energy	8 GeV	120 GeV
POT/year	$6 imes 10^{20}$	$4 imes 10^{20}$
Spill Time	1.6 μs	10 µs
Target	Beryllium	Graphite
Axis	On	Off

Detector Properties

Three LAr TPC detectors:

- SBND: Best with BNB (On axis)
 112 tons 110 m away with area 16 m²
- ► MicroBooNE: Currently operating
 - 170 tons 470 m away with area 5.96 m^2
- ICARUS: Best with NuMI (Off axis)
 480 tons 600 m away with area 18.9 m²

Magnetic Focusing Horn

Focus one charge of mesons toward detectors

Event Generation: Backgrounds

- Irreducible backgrounds extremely suppressed
- Dominated by photon and pion fakes

 $S \rightarrow e^+e^-$ background

 $S
ightarrow \mu^+ \mu^-$ background

Current Analysis Strategy

- ► So far: kinematic cuts only
 - ▶ One pair of *S* daughters, no other activity
 - Reconstruct *S* and require $\theta_{S,z} < 4^{\circ}$
 - \pm 40 MeV invariant mass bump peak
- e^+e^- : separation of 10° eliminates most bkg
- ▶ $\mu^+\mu^-$: Cut on *E* ratio, individual angles

Current Distributions

Preliminary Results

Conclusions

- There is a lot of room to explore non-neutrino BSM at neutrino detectors
- Opportunities with beams at short-baseline & astrophysical sources at long-baseline detectors
- Need more understanding of LAr TPC' to fully determine capabilities for BSM