Curvature Perturbations From Stochastic Particle Production During Inflation

Marcos A. G. García

Rice University

1902.09598, MG, M. Amin, S. Carlsten, D. Green
19xx.xxxxx, MG, M. Amin, D. Green, D. Baumann
Complexity in the early universe

Inflation
- Near scale invariant: $\Delta^2_\zeta \sim k^{n_s - 1}$
- Near Gaussian
- Weak self-interaction (slow roll)

Particle theory
- SM UV completions $N_F \gg 1$
- Coupling to ϕ weakly constrained
- Non-trivial field manifolds
Complexity in the early universe

Inflation

- Near scale invariant: $\Delta_{\zeta}^2 \sim k^{n_s - 1}$
- Near Gaussian
- Weak self-interaction (slow roll)

Particle theory

- SM UV completions $N_F \gg 1$
- Coupling to ϕ weakly constrained
- Non-trivial field manifolds

$$m_{\text{eff}}^2(t) = m_{\chi}^2 + g^2(\phi(t) - \phi_i) + \cdots$$

(trapped inflation)

(preheating)
Spectator field in dS

Spectator field in an expanding universe

\[
\left(\frac{d^2}{dt^2} - \frac{\nabla^2}{a^2} + 3H \frac{d}{dt} + M^2 + m^2(t) \right) \chi(t, x) = 0
\]

\[a = a_0 e^{H(t-t_0)} \]
(de Sitter)

\[M^2 = 2H^2 \]
(conformal)

\[M^2 = 0 \]
(massless)

\[m^2(t) = \sum_j m_j \delta(t - t_j) \]
(localized, non-adiabatic)
Spectator field in an expanding universe

\[
\left(\frac{d^2}{dt^2} - \frac{\nabla^2}{a^2} + 3H \frac{d}{dt} + M^2 + m^2(t) \right) \chi(t, \mathbf{x}) = 0
\]

- \(a = a_0 e^{H(t-t_0)} \) (de Sitter)
- \(M^2 = 2H^2 \) (conformal)
- \(M^2 = 0 \) (massless)
- \(m^2(t) = \sum_j m_j \delta(t-t_j) \) (localized, non-adiabatic)

\(k \frac{aH}{aH} = |k\tau| \leq 1 \) (horizon)

\[
X_k \equiv a \chi_k = \alpha_{k,j} f_k(\tau) + \beta_{k,j} f_k^*(\tau)
\]

\[
f_k(\tau) = \frac{e^{-ik\tau}}{\sqrt{2k}} \times \left\{ \begin{array}{l}
1 \\
(1 - \frac{i}{k\tau})
\end{array} \right.
\]

- \(m_j, t_j \) random
- \(\langle m_j \rangle = 0 \)
- \(\langle m_i m_j \rangle = \sigma^2 \delta_{ij} \)
- \(\langle N_s \rangle \frac{H(t_i - t_f)}{H(t_i - t_f)} = N_s \)
Fokker-Planck formalism

Numerical solution

\[n = |\beta_j|^2 \ll 1 \quad \text{and} \quad n \gg 1 \]

\[P(\ln|X_k|^2, t) \]
Fokker-Planck formalism

Numerical solution

$P(\ln|X_k|^2, t)$

$\ln|X_k|^2$

$m^2(t)$

$H(t - t_k)$

M_j

$(\beta_j \alpha_j) (\beta_{j+1} \alpha_{j+1})$
Fokker-Planck formalism

Numerical solution

\[\mathbf{M}_j \mathbf{M}_{j-1} \cdots \mathbf{M}_1 = \mathbf{M}(j) \]

\[\ln |X_k|^2 \]

\[P(\ln |X_k|^2, t) \]

\[m^2(t) \]

\[H(t - t_k) \]
Fokker-Planck formalism

Numerical solution

\[\ln |X_k|^2 \]

\[P(\ln |X_k|^2, t) \]

\[H(t - t_k) \]

\[m^2(t) \]
Fokker-Planck formalism

Numerical solution

\[P(\ln |X_k|^2, t) \]

\[H(t - t_k) \]

\[m^2(t) \]

\[\ln |X_k|^2 \]

\[-20 -15 -10 -5 0 5 10 15 20 \]

\[-20 -15 -10 -5 0 5 10 15 20 \]
Numerical and analytical solution

\[P(\mathbf{M}; t + \delta t) = \int d\mathbf{M}_j P(\mathbf{M}_j^{-1}\mathbf{M}; t) P(\mathbf{M}_j; \delta t) \]
1. Strength of non-adiabaticity is quantified by:
\[N_s \frac{\text{Var}[m_j]}{H^2} \equiv N_s \left(\frac{\sigma}{H} \right)^2 \]

2. Distributions:

\[|k\tau| \gg 1 \]

\[|k\tau| \sim 1 \]

\[|k\tau| \ll 1 \]
\(\text{Mean of } \ln |X_k|^2 \text{ grows linearly with time outside the horizon} \)
Mean of $\ln |X_k|^2$ grows linearly with time outside the horizon

$$\partial_{Ht} \langle \ln |X_k|^2 \rangle = \mu_1 \left(N_s \left(\frac{\sigma}{H} \right)^2 \right)$$
3 Mean of $\ln |X_k|^2$ grows linearly with time outside the horizon

$$\partial_{Ht} \langle \ln |X_k|^2 \rangle = \mu_1 \left(\mathcal{N}_s \left(\frac{\sigma}{H} \right)^2 \right)$$

4 The two-point function of $Z_k = \ln |X_k|^2 - \langle \ln |X_k|^2 \rangle$ is also linear
3 Mean of $\ln |X_k|^2$ grows linearly with time outside the horizon

$$\partial_{Ht} \langle \ln |X_k|^2 \rangle = \mu_1 \left(\mathcal{N}_s \left(\frac{\sigma}{H} \right)^2 \right)$$

4 The two-point function of $Z_k \equiv \ln |X_k|^2 - \langle \ln |X_k|^2 \rangle$ is also linear

$$\langle Z_k(t) Z_{k'}(t') \rangle = \mu_2 \left(\mathcal{N}_s \left(\frac{\sigma}{H} \right)^2 \right) H \min \left[t - t_k, t - t_{k'}, t' - t_k, t' - t_{k'} \right]$$

$|X_k|^2$ performs a geometric (Brownian) random walk outside the horizon

$$\langle |X_{k_1}(t_1)|^2 \cdots |X_{k_n}(t_n)|^2 \rangle = \exp \left[\sum_{i=1}^{n} \langle \ln |X_{k_i}(t_i)|^2 \rangle + \frac{1}{2} \sum_{i,j=1}^{n} \langle Z_{k_i}(t_i) Z_{k_j}(t_j) \rangle \right]$$
The quasi-de Sitter Goldstone π couples to the spectator field χ,

\[
S = \frac{1}{2} \int \sqrt{-g} \, d^4 x \left[c(t + \pi) \partial_\mu \pi \partial^\mu \pi + \partial_\mu \chi \partial^\mu \chi - \left(M^2 + m^2 (t + \pi) \right) \chi^2 \right]
\]
The quasi-de Sitter Goldstone π couples to the spectator field χ,

$$\mathcal{S} = \frac{1}{2} \int \sqrt{-g} \, d^4x \left[c(t + \pi) \partial_\mu \pi \partial^\mu \pi + \partial_\mu \chi \partial^\mu \chi - \left(M^2 + m^2(t + \pi) \right) \chi^2 \right]$$

To lowest order in π, with $\zeta \simeq H\pi$

$$\delta \Delta^2_\zeta(k) = 4\pi^2(\Delta^2_\zeta)^2 \frac{k^3}{H^4} \int d\tau' d\tau'' \tau' \tau'' G_k(\tau, \tau') G_k(\tau, \tau'') \frac{dm^2(\tau')}{d\tau'} \frac{dm^2(\tau'')}{d\tau''} \times \int \frac{d^3p}{(2\pi)^3} \left[X_p(\tau') X^*_p(\tau'') \right]_{AS} \left[X_{|p-k|}(\tau') X^*_{|p-k|}(\tau'') \right]_{AS}$$
The quasi-de Sitter Goldstone π couples to the spectator field χ,

$$\mathcal{S} = \frac{1}{2} \int \sqrt{-g} \, d^4x \left[c(t + \pi) \partial_\mu \pi \partial^\mu \pi + \partial_\mu \chi \partial^\mu \chi - \left(M^2 + m^2(t + \pi) \right) \chi^2 \right]$$

To lowest order in π, with $\zeta \simeq H\pi$

$$\delta \Delta_\zeta^2(k) = 4\pi^2 (\Delta_\zeta^2)^2 \frac{k^3}{H^4} \int d\tau' d\tau'' \tau' \tau'' G_k(\tau, \tau') G_k(\tau, \tau'') \frac{dm^2(\tau')}{d\tau'} \frac{dm^2(\tau'')}{d\tau''}$$

$$\times \int \frac{d^3p}{(2\pi)^3} \left[X_p(\tau') X_p^*(\tau'') \right]_{AS} \left[X_{|p-k|}(\tau') X_{|p-k|}^*(\tau'') \right]_{AS}$$

$$\downarrow$$

$$\left\langle \delta \Delta_\zeta^2(k) \right\rangle = \left(\Delta_{\zeta,0}^2 \right)^2 N_s \left(\frac{\sigma}{H} \right)^2 e^\mathcal{F}(k, N_e, N_s(\sigma/H)^2)$$
Curvature power spectrum (conformal, \(N_e = 20\))

\[
\langle \delta \Delta^2 \rangle / \Delta^2 \approx N_s (\sigma/H)^2 = 3
\]

- Always super-horizon
- Cross horizon during scatterings
- Always sub-horizon
(conformal, \(N_e = 20, N_s (\sigma/H)^2 = 25 \))
Curvature power spectrum

(conformal, $N_e = 20, \mathcal{N}_s (\sigma / H)^2 = 25$)
(conformal, $N_e = 20, N_s(\sigma/H)^2 = 25$)
Curvature power spectrum

(conformal, \(N_e = 20, N_s (\sigma / H)^2 = 25 \))
Curvature power spectrum

(conformal, $N_e = 20, N_s(\sigma/H)^2 = 25$)
Conclusions

- Stochastically excited spectator fields undergo geometric random walks
- Lead to features in the curvature power spectrum \rightarrow constraints
- Look for enhancement in the N-point function

$$\langle \zeta^n \rangle - \langle \zeta^n \rangle_{\chi=0} \sim \langle \zeta^2 \rangle_{\chi=0} \times \exp \left[\frac{n^2}{2} F \left(N_s \frac{\sigma^2}{H^2} \right) \right]$$

- Higher spin spectators / higher spin observables
- Stochastic preheating
- Backreaction regime \rightarrow dissipation

Thank You
Moment rates

\[\partial_H \langle \ln |X|^2 \rangle + 2 \]

\[\text{Var} [\ln |X|^2] \]

\[N_s (\sigma/H)^2 \]

Marcos A. G. García. SUSY 21/05/2019
Plenty of available parameter space

\[N_{s}(\sigma/H)^2 \]

\[<\rho_{\chi}> \]

\[\rho_{\chi}^{\text{typ}} \]

\[M^2 = 2H^2 \]