Low scale seesaw models and collider phenomenology EPJC78(2018)795 – PLB786(2018)106 – arXiv:1812.08750

Cédric Weiland

Pitt-PACC, University of Pittsburgh

SUSY 2019 Corpus Christi 22 May 2019

Massive neutrinos and New Physics

- Observation of *ν* oscillations
 ⇒ at least 2 *ν* are massive
- BSM necessary for ν mass
 - Radiative models
 - Extra-dimensions
 - R-parity violation in supersymmetry
 - Seesaw mechanisms
- 3 minimal tree-level seesaw models \Rightarrow 3 types of heavy fields
 - type I: right-handed neutrinos, SM gauge singlets $\rightarrow \nu_R$
 - type II: scalar triplets $\rightarrow \Delta^{\pm\pm}, \Delta^{\pm}, \Delta^{0}$
 - type III: fermionic triplets $\rightarrow \Sigma^+, \Sigma^0, \Sigma^-$

Cédric Weiland (Pitt-PACC)

Properties of type I seesaw and variants

• Generic field content: SM + fermionic gauge singlets (a.k.a. right-handed neutrinos / sterile neutrinos)

$$\mathcal{L}_{\text{type I}} = -Y_{\nu}\overline{L}\tilde{\phi}\nu_{R} - \frac{1}{2}M_{R}\overline{\nu_{R}^{c}}\nu_{R} + \text{h.c.}$$

After EWSB, mixing between active and sterile neutrinos

$$\begin{pmatrix} \nu_L \\ \nu_R^c \end{pmatrix}_{\text{gauge}} = \begin{pmatrix} U & V \\ W & X \end{pmatrix} P_L \begin{pmatrix} \nu \\ N \end{pmatrix}_{\text{mass}}$$

giving the relevant couplings for N production

$$\begin{aligned} \mathcal{L}_{\mathrm{Int.}} &= & - & \frac{g}{\sqrt{2}} W^+_\mu \ \overline{N} \ V^* \ \gamma^\mu P_L \ell^- \\ & - & \frac{g}{2 \cos \theta_W} Z_\mu \ \overline{N} \ V^* \ \gamma^\mu P_L \nu_\ell \\ & - & \frac{g m_N}{2 M_W} h \ \overline{N} \ V^* P_L \nu_\ell + \mathrm{h.c.} \ , \end{aligned}$$

Towards testable Type I variants

• Taking $M_R \gg m_D$ gives the "vanilla" type 1 seesaw

$$\mathbf{m}_{\nu} = -m_D M_R^{-1} m_D^T$$

$$m_{\nu} \sim 0.1 \,\mathrm{eV} \Rightarrow \begin{vmatrix} Y_{\nu} \sim 1 & \mathrm{and} & M_R \sim 10^{14} \,\mathrm{GeV} \\ Y_{\nu} \sim 10^{-6} \,\mathrm{and} & M_R \sim 10^2 \,\mathrm{GeV} \end{vmatrix}$$

• $V \sim m_D M_R^{-1}$ controls the phenomenology of the heavy neutrinos too

 \rightarrow Cancellation in matrix product to get large $m_D M_R^{-1}$

 $m_{\nu}=0$ equivalent to conserved lepton number for models with arbitrary number of ν_R [Moffat, Pascoli, CW, 2017]

 \Rightarrow Nearly conserved L symmetry ensures stability of the cancellation

- Explicitly realised in, e.g.
 - low-scale type I [Ilakovac and Pilaftsis, 1995] and others
 - inverse seesaw [Mohapatra and Valle, 1986, Bernabéu et al., 1987]
 - linear seesaw [Akhmedov et al., 1996, Barr, 2004, Malinsky et al., 2005]

Searching for heavy neutrinos at colliders

- Review talk this morning by Bhupal Dev

• Indirect search via modified $\sigma(ee \rightarrow WWH)$

Heavy neutrino production at hadron colliders

Signal: tri-lepton + MET

- Focus on lepton number conserving final state
- Produced from charged-current Drell-Yan and VBF
- Signal: $pp \rightarrow \ell_i^{\pm} \ell_j^{\mp} \ell_k^{\pm} + \not\!\!\!E_T$
- Purely leptonic final state → include jet veto in analysis

Jet veto with fixed p_T

Jets associated with colour-singlet processes mostly forward and soft
 → veto central and hard jets associated with coloured backgrounds

[Barger et al., 1990, Barger et al., 1991, Fletcher and Stelzer, 1993, Barger et al., 1995]

- Major issues:
- Signal efficiency drops with m_N
- $\alpha_s(p_T^{
 m Veto})\log(Q^2/p_T^{
 m Veto\,2})$ corrections
- Jet veto: NLO + NNLL(veto) resummation within SCET formalism [Alwall et al., 2014, Becher et al., 2015]
- Residual scale uncertainties: ±10/5/2%

Dynamical jet veto

• Idea: Tie the veto scale to the hard scale

• Previously used for EW multiboson production

[Denner et al., 2009, Nhung et al., 2013, Frye et al., 2016]

•
$$p_T^{\text{Veto 2}} = m_N/2 \Rightarrow Q^2/p_T^{\text{Veto 2}} \sim 4$$

- Logs under control → No need for NNLL resummation any more
- p_T^{Veto} increases with m_N \rightarrow No drop in efficiency
- Mismatch here due to $\mathcal{O}(\alpha_S^2)\log R$

 Can be used for τ at NLO since they are colour-disconnected from the initial state

Results

- $p_T^{\ell \ [\tau_h] \ \{j\}} > 15 \ [30] \ \{25\} \ \text{GeV},$ $|\eta^{\mu,\tau_h}| < 2.4, \ |\eta^j| < 2.5$ $|\eta^e| < 1.4 \ \text{or} \ 1.6 < |\eta^e| < 2.4$
- Top background: killed by jet veto $p_T^{\rm Veto} = p_T^{\ell_1}$
- EW triboson: $S_T > 125 175 \,\text{GeV}$

$$S_T^{3W} \equiv \sum_{\ell} |\vec{p_T}^{\ell}| \sim 3 \frac{M_W}{2} \sim 120 \,\text{GeV} \\ S_T^N \sim \frac{m_N}{5} + \frac{m_N}{2} + \frac{m_N}{4} = \frac{19}{20} m_N.$$

- EW diboson: $M_{\ell\ell} > 10 \text{ GeV},$ $|M_{\ell\ell} \text{ or } M_{3\ell} - M_Z| < 15 \text{ GeV}$
- Fake leptons: killed by jet veto
- Proxy for m_N: multi-body transverse mass [Barger et al., 1983, Barger et al., 1988]
- $\mathcal{O}(10)$ improvement in $|V_{\ell 4}|^2$ reach
- Above 400 GeV, dynamic veto with 300fb⁻¹ performs better than standard analysis with 3ab⁻¹

Cédric Weiland (Pitt-PACC)

Future sensitivities

- Able to improve on indirect EWPO constraints at the (HL-)LHC (Run 3 up to 250 GeV, HL-LHC up to 600 GeV)
- Future colliders can probe the $\mathcal{O}(10)$ TeV regime
- Ratios of cross-sections in different final states sensitive to the flavour structure

WWH production

- Idea: Probe Y_{ν} at tree-level with off-shell N \Rightarrow t-channel $e^+e^- \rightarrow W^+W^-H$
- Good detection prospects in SM [Baillargeon et al., 1994]
- SM contributions: W^{-} e^+ H γ/Z γ/Z W^+ Н W^{-} SM+ISS contributions: n_i n_i Η n_i $\sim H$
 - SM electroweak corrections negligible for $\sqrt{s} > 600 \, {\rm GeV}$ [Mao et al., 2009] \Rightarrow neglected in our analysis

CoM energy dependence

- LO calculation, neglecting m_e
- Calculation done with FeynArts, FormCalc, BASES
- Deviation from the SM in the insert

• Polarized:
$$P_{e^-} = -80\%$$
, $P_{e^+} = 0$

•
$$\sigma(e^+e^- \rightarrow W^+W^-H)_{\text{pol}}$$

~ $2\sigma(e^+e^- \rightarrow W^+W^-H)_{\text{unpol}}$

•
$$Y_{\nu} = 1, M_{R_1} = 3.6 \text{ TeV},$$

 $M_{R_2} = 8.6 \text{ TeV}, M_{R_3} = 2.4 \text{ TeV}$

- Destructive interference between SM and heavy neutrino contributions
- Maximal deviation of -38% close to 3 TeV

Results in the inverse seesaw

- Maximal deviation of -38% , $\sigma_{pol}^{ISS}=1.23\,{\rm fb}$
 - \rightarrow ISS induces sizeable deviations in large part of the parameter space
- Provide a new probe of the O(10) TeV region
 ⇒ Complementary to existing observables

Enhancing the deviations

- Stronger destructive interference from ISS for: central production – larger Higgs energy
- Cuts: $|\eta_H| < 1$, $|\eta_{W^{\pm}}| < 1$ and $E_H > 1$ TeV

	Before cuts	After cuts
$\sigma_{\rm SM}$ (fb)	1.96	0.42
$\sigma_{\rm ISS}$ (fb)	1.23	0.14
Δ^{BSM}	-38%	-66%

Conclusions

- ν oscillations \rightarrow New physics is needed to generate masses and mixing
- Higgs sector allows new measurement to probe neutrino mass models
- Dynamical jet veto:
 - reduces QCD uncertainties
 - improve signal efficiencies
 - improve background rejection
- O(10) improvement in $|V_{\ell 4}|$ sensitivity in tri-lepton searches for heavy N
- Broadly applicable to other color singlet processes
- Corrections to W^+W^-H production as large as -66% after cuts at CLIC
- Maximal for diagonal Y_{ν} and provide new probes of the $\mathcal{O}(10)$ TeV region
- Complementarity with flavor observables

Backup slides

Signal definition • Characteristic p_T scales: $p_T^{\ell_N} \sim \frac{m_N}{5}$ $p_T^{\ell_W} \sim \frac{m_N}{2}$ $p_T^{\ell_\nu} \sim \frac{m_N}{4}$

Backup

- Selection cuts at the LHC
 - Analysis quality objects + divergences regulation

 $p_T^{\ell \ [\tau_h] \ \{j\}} > 15 \ [30] \ \{25\} \ \text{GeV} \ , |\eta^{\mu,\tau_h}| < 2.4 \ , |\eta^j| < 2.5 \ , |\eta^e| < 1.4 \ \text{or} \ 1.6 < |\eta^e| < 2.4$

- 3 analysis-quality charged lepton
- Dynamical jet veto: $p_T^{\text{Veto}} = p_T^{\ell_1}$
- Sum of p_T : $S_T = p_T^{\ell_1} + p_T^{\ell_2} + p_T^{\ell_3} > 125 \,\text{GeV}$
- Invariant masses: $M_{\ell\ell} > 10 \,\text{GeV}, |M_{\ell\ell} \text{ or } M_{3\ell} M_Z| > 15 \,\text{GeV}$
- Mass hypothesis: $-0.15 < \frac{(\tilde{M}_T m_N^{\rm hypothesis})}{m_N^{\rm hypothesis}} < 0.1$

$$\tilde{M}_{T,i}^2 = \left[\sqrt{p_T^2(\ell^{\rm OS}) + m_{\ell^{\rm OS}}^2} + \sqrt{p_T^2(\ell_i^{\rm SS}, \vec{p}_T) + M_W^2}\right]^2 - \left[\vec{p}_T(\ell^{\rm OS}, \ell_i^{\rm SS}) + \vec{p}_T\right]^2, \quad i = 0.2$$

TPAR

Jet veto efficiencies

- CCDY efficiencies: 45 65% vs 90 98%
 VBF efficiencies: *O*(10)% vs 90 98%
- 2% CCDY scale uncertainty and behaviour comparable to NLO+NNLL → NLO+PS is sufficient for discovery searches
- Jet veto useful for rejecting EW background
- Degraded top background rejection from $\ell \nu$ ($\ell \ell$) recoiling against $t\bar{t}$

Backup

Top background

• Single top and top pair + W or Z (e.g $\bar{t}tW$ with $t \to Wb \to \ell \nu b$)

•
$$t \to Wb \to \ell\nu b$$
: $p_T^\ell \sim E_W/2 \approx 50 - 55 \text{ GeV}$
• $W \to \ell\nu$ or $Z \to \ell\ell$: $p_T^\ell \sim M_V/2 \sim 40 - 45 \text{ GeV}$
• $t \to Wb \to \ell\nu b$: $p_T^b \sim m_t(1 - M_W^2/m_t^2)/2 \approx 60 - 70 \text{ GeV}$

 \Rightarrow Suppressed by jet veto $p_T^{\text{Veto}} = p_T^{\ell_1}$

• Additional cuts further suppress top background

EW triboson backgrounds

- *WWW* and *WWℓℓ*
 - · Main background that survives cuts in traditional analysis
 - $\mathcal{O}(30\%)$ of inclusive $pp \to WWW$ is $+1j \to$ Taken care of by the jet veto
 - Jet veto forces W to be mostly at rest

$$S_T^{3W} \equiv \sum_{\ell} |\vec{p_T}^{\ell}| \sim 3\frac{M_W}{2} \sim 120 \text{ GeV}$$

VS $S_T^N \sim \frac{m_N}{5} + \frac{m_N}{2} + \frac{m_N}{4} = \frac{19}{20}m_N$

- Broadening of the distribution at higher \sqrt{s}
- \Rightarrow Suppressed by jet veto + $S_T > 125/150/175$ GeV at $\sqrt{s} = 14/27/100$ TeV

Backup

EW diboson and fake lepton backgrounds

- Resonant WZ/ZZ
 - Standard cuts

$$m_{\ell_i \ell_j} > 10 \text{ GeV}, \qquad |m_{\ell_i \ell_j} - M_Z| > 15 \text{ GeV},$$

and $|m_{3\ell} - M_Z| > 15 \text{ GeV}$

- Applied to all $\ell_i \ell_j$ suppressed charge misID and fake leptons
- ⇒ Suppressed by invariant mass cuts
- Continuum $\ell \ell \ell \nu / \ell \ell \ell \ell$
 - Forced to be at rest by the jet veto
 - \Rightarrow Suppressed by jet veto + $S_T > 125 175 \, \text{GeV}$
- Fake leptons
 - misID rate for low- p_T QCD jet as e^{\pm} : $\sim 10^{-4}$
 - misID rate for QCD jet as τ_h : ~ 10^{-4} – 10^{-2}
 - misIDed jet has to be colour connected to the rest of the event
 - \rightarrow high probability to have additional jets with similar p_T
 - ⇒ Suppressed by jet veto + invariant mass cuts

Most relevant constraints for the ISS

• Accommodate neutrino oscillation data using parametrization

[Casas and Ibarra, 2001; Arganda, Herrero, Marcano, CW, 2015; Baglio and CW, 2017]

$$vY_{\nu}^{T} = V^{\dagger} \operatorname{diag}(\sqrt{M_{1}}, \sqrt{M_{2}}, \sqrt{M_{3}}) R \operatorname{diag}(\sqrt{m_{1}}, \sqrt{m_{2}}, \sqrt{m_{3}}) U_{PMNS}^{\dagger}$$
$$M = M_{R} \mu_{X}^{-1} M_{R}^{T}$$
or

$$\mu_X = M_R^T Y_\nu^{-1} U_{\text{PMNS}}^* m_\nu U_{\text{PMNS}}^\dagger Y_\nu^{T^{-1}} M_R v^2 \qquad \text{and beyond}$$

- Charged lepton flavour violation
 - ightarrow For example: ${
 m Br}(\mu
 ightarrow e\gamma) < 4.2 imes 10^{-13}$ [MEG, 2016]
- Global fit to EWPO and low-energy data [Fernandez-Martinez et al., 2016]
- Electric dipole moment: 0 with real PMNS and mass matrices
- Invisible Higgs decays: $M_R > m_H$, does not apply
- Yukawa perturbativity: $\left|\frac{Y_{\nu}^{2}}{4\pi}\right| < 1.5$

Backup

Impact of constraints

Parameter scan in Casas-Ibarra parametrization

- Pass all constraints
- Excluded by Theory
- Excluded by EWPO
- Excluded by Theory+EWPO
- Excluded by LFV
- LFV limit
- --- Neutrino oscillations limit

- Y_{ν} increases when M_R increases and/or μ_X decreases
- Strongest constraints:
 - Lepton flavour violation, mainly $\mu \rightarrow e\gamma$
 - Yukawa perturbativity (and neutrino width)
- Larger Y_{ν} (and effects) necessarily excluded by LFV constraints ?
 - \rightarrow Switch to μ_X -parametrization and use diagonal Y_{ν}

Backup