Clockwork Neutrinos

Gowri Kurup

Based on: S. Hong, G. Kurup, M. Perelstein [arXiv:1903.06191]

Cornell University

22 May, 2019

Outline of this talk

- Motivation
- Overview of the clockwork mechanism for fermions
- Analytical results: Spectrum and couplings
- Constraints on the model
- Generalized Clockwork
- Collider Signatures
- Conclusion

Motivation: A Dirac Mass for the Neutrino

- Neutrino masses are very small compared to other fermion masses in the SM
- Most popular model for small neutrino masses so far: the **see-saw** mechanism, which has Majorana mass terms
- Can we design a model with *only* **Dirac** masses, and naturally give very small masses for the SM neutrino?
- The Clockwork mechanism provides one such solution

Clockwork Theory

Possible to have hierarchically small neutrino masses from $O(1)$ Lagrangian parameters. Theory with N+1 right-chiral $\&$ N left-chiral fermions + nearest-'neighbour' interactions:

$$
\mathcal{L}_{\text{cw}} = \mathcal{L}_{\text{kin}} - m \sum_{i=1}^{N} \left(\psi_i^{\dagger} \chi_i - q \psi_i^{\dagger} \chi_{(i-1)} + \text{h.c.} \right) = \mathcal{L}_{\text{kin}} - \Psi^{\dagger} \tilde{M} X
$$

Clockwork Theory

Eigenvalues:
$$
\boxed{m_0^2 = 0}, \quad m_i^2 = m^2 \lambda_i = m^2 \left(1 + q^2 - 2q \cos \frac{i\pi}{N+1}\right)
$$
One massless mode from remaining chiral symmetry:
$$
U(1)_L^N \times U(1)_R^{N+1} \to U(1)
$$

Clockwork Theory

Eigenvalues:
$$
\boxed{m_0^2 = 0}, \quad m_i^2 = m^2 \lambda_i = m^2 \left(1 + q^2 - 2q \cos \frac{i\pi}{N+1}\right)
$$
One massless mode from remaining chiral symmetry:
$$
U(1)_L^N \times U(1)_R^{N+1} \to U(1)
$$

Eigenvectors: Oscillatory, except for **exponentially decreasing** zero mode:

$$
(U_R)_{j0} = \frac{\mathcal{N}_0}{q^{N-j}}, (U_R)_{jk} = \mathcal{N}_k \left[q \sin \frac{(N-j)k\pi}{N+1} - \sin \frac{(N-j+1)k\pi}{N+1} \right]
$$

$$
\mathcal{N}_0 \equiv \sqrt{\frac{q^2-1}{q^2-q^{-2N}}}, \quad \mathcal{N}_k \equiv \sqrt{\frac{2}{(N+1)\lambda_k}}
$$

Clockwork Theory + SM

Exponentially small coupling of zero mode to 0th site $\propto \frac{1}{q^N}$ ⇒ χ_0 χ_1 χ_N $\left\| \begin{matrix} yv \\ \end{matrix} \right\|$ m_1 m_N Yukawa coupling to SM Higgs at $\sim \frac{yv}{q^N}$ $(mq)_0$ ν_L $(mq)_N$ 0 th site to generate small mass

This gives very small neutrino masses! e.g. $q = 3$, $N = 20$, $y = 0.01 \Rightarrow m_{\nu} \sim 0.5 \text{ eV}$

$$
M^{\dagger}M = m^2 \begin{pmatrix} q^2 + p^2 & -q & 0 & \cdots & 0 & 0 \\ -q & 1 + q^2 & -q & \cdots & 0 & 0 \\ 0 & -q & 1 + q^2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 + q^2 & -q \\ 0 & 0 & 0 & \cdots & -q & 1 \end{pmatrix}, \quad p = \frac{y v}{\sqrt{2}m} \qquad \begin{array}{c} \text{which is given} \\ \text{subtrian} \\ \text{solution to} \\ \text{disgonalization} \\ \text{problem} \end{array}
$$

Large-N Expansion

Expand characteristic equation in $\frac{p q}{N} = \frac{y v}{\sqrt{2} m} \frac{q}{N}$

Mass eigenstates: (α is the flavour index)

Large-N Expansion

Charged current:

$$
J_W^{\mu+} = \frac{V_{\alpha\beta}}{\sqrt{2}} \overline{e}_{L\alpha} \gamma^{\mu} P_L \left(\kappa_{0\beta} \mathcal{N}_{0\beta} + \sum_{j=1}^N \kappa_{j\beta} \mathcal{N}_{j\beta} \right) + \mathcal{O}(p^3), \quad \text{WWW}
$$

where,

$$
\kappa_{0\beta} = 1 - \frac{p_{\beta}^2}{N+1} \sum_{k=1}^N \frac{C_k}{2\lambda_k}
$$

$$
\kappa_{j\beta} = -p_{\beta} \sqrt{\frac{1}{N+1} \frac{C_j}{\lambda_j}}, j = 1...N
$$

Similar corrections to neutral current.

 ℓ

Eigenmodes and Mass Spectrum

Mass spectrum of $N=15$ Clockwork theories which give appropriate neutrino masses

i. Masses of the SM neutrinos

- i. Masses of the SM neutrinos:
	- Sum of masses from CMB data, $\sum m_{\nu_i} \lesssim 0.20 \text{ eV}$ $i=1,2,3$
	- Mass squared differences from oscillation data
	- For this talk, normal hierarchy with a nearly degenerate spectrum is chosen
		- (Constraints are similar for other spectra)

- i. Masses of the SM neutrinos
- ii. Lepton Flavour Violation

- i. Masses of the SM neutrinos
- ii. Lepton Flavour Violation: Strongest bound from $\mu \to e \gamma$ process:

Minimal
\nFlavour
\nViolation

\n
$$
BR(\mu \to e\gamma) = \frac{3\alpha_{em}}{8\pi} \left| \sum_{\alpha=1}^{3} \sum_{j=0}^{N} V_{\mu\alpha} V_{ea}^{*} | (U_{L\alpha})^{0j} |^{2} F\left(\frac{m_{j,\alpha}^{2}}{m_{W}^{2}}\right) \right|^{2} \sim \frac{y^{4}v^{4}}{m^{4}}
$$

T. P. Cheng, L.-F. Li - Phys. Rev. Lett. 45 (1980)

- i. Masses of the SM neutrinos
- ii. Lepton Flavour Violation
- iii. Precision Electroweak Constraints

- i. Masses of the SM neutrinos
- ii. Lepton Flavour Violation
- iii. Precision Electroweak Constraints:
	- Use α , m_Z , and Γ_μ as fixed inputs to determine g, g' and v, including shifts due to clockwork
	- Do χ^2 fit on other PEW observables
	- ⇒ Limit on fractional changes in SM neutrino gauge couplings Recall,

$$
\left(J_W^{\mu+}\right)_0 = \frac{V_{\alpha\beta}}{\sqrt{2}} \overline{e}_{L\alpha} \gamma^\mu P_L \kappa_{0\beta} \mathcal{N}_{0\beta} + \mathcal{O}(p^3) \,, \; \kappa_{0\beta} = 1 - \frac{p_\beta^2}{N+1} \sum_{k=1}^N \frac{C_k}{2\lambda_k}
$$

$$
N = 20
$$

$$
q \epsilon [2.32, 4.64]
$$

Red contours: Mass of first excited state

Blue contours: Coupling of W-boson to first excited state

Generalized Clockwork Theory

 $N-1$ *q* need not be a constant: $\mathcal{L} = \mathcal{L}_{kin} - m \sum_{i=0} (\psi_i^{\dagger} \chi_i - q(j) \psi_i^{\dagger} \chi_{(i-1)}) + \text{h.c.}$

(Symmetry breaking occurs for any $q \Rightarrow$ generically leads to exponentially small mass)

Generalized CW models can have more efficient suppression of zero mode + localization

Generalized Clockwork Theory

Generalized CW models can have more efficient suppression of zero mode + localization e.g.- For linearly increasing q, $(U_L)_{N0} \sim \frac{1}{N! q^N}$ (similar behaviour for linear decrease)

Masses in the generalized model examples we considered are generically more spread out, due to higher *q* values in the mass matrix.

Generalized Clockwork Theory

Generalized CW models can have more efficient suppression of zero mode + localization e.g.- For linearly increasing q, $(U_L)_{N0} \sim \frac{1}{N! q^N}$ (similar behaviour for linear decrease)

Uniform CW eigenmodes are oscillatory and spread out; generalized CW eigenmodes are localised.

Constraints for generalized clockwork

$$
N = 10
$$

$$
q(i) = q_0 \times i
$$

$$
q_0 \in [0.97, 4.85]
$$

Red contours: Mass of first excited state

Blue contours: Coupling of W-boson to first excited state

Collider Signatures

Hadron Colliders: 3*l* **+ MET Lepton Colliders:** *ljj* **+ MET**

Higher mass of sterile neutrinos \Rightarrow high invariant mass and p_T for final products Lepton colliders: Can detect any reasonable CW model within kinematic range LHC: Low mass $(\sim 100 \text{ GeV})$ models are detectable with projected future luminosities

Collider Signatures

Universal Clockwork - Smeared out bump; Couplings to excited states are roughly similar; Resonance includes multiple states ⇒ shape analysis?

Generalized Clockwork

- Sharper bump; Higher coupling to lowest excited state; Resonances are separated, with much smaller significance for heavier neutrinos

Collider Analysis Example

LHC - 14 TeV ($\mathcal{L} = 3000 f b^{-1}$)		U100	G100	
σ (fb) with parton-level cuts	0.66		1.39	
$#$ of signal events	1965		4180	
Cuts:	S(fb)	BG(fb)	S(fb)	BG(fb)
Pre-selection cuts	0.29	93	0.62	93
s_{12} < 80 GeV	0.13	13.5	0.38	13.5
s_{23} < 80 GeV	0.12	8.7	0.37	8.7
M_{rec} < 120 GeV			0.29	3.8
S/B	0.01		0.077	
S/\sqrt{B}	2.3		8.2	
$+\ B$	2.3		7.9	

 ℓ_1, ℓ_2 : Same Flavor Opposite Charge Leptons

 ℓ_3 : Same charge as ℓ_1

 \mathcal{M}_{rec} : Mass reconstructed using $\ensuremath{\text{W}}$ boson mass

Summary

- The Clockwork framework offers a way to get small Dirac neutrino masses from $O(1)$ Lagrangian parameters
- Approximate analytical solutions to the eigenvalue problem have been obtained through large-N expansions/perturbation theory
- Large sections of the parameter space satisfy flavour and EW constraints
- Low mass CW models may be observable at HL-LHC, and most kinematically accessible models can be discovered at future lepton colliders
- Can be generalized to have interesting phenomenology, more efficient 'clockworking' and sharper collider signatures

Thank you!

See arXiv:1903.06191 for more details.

Gowri Kurup Cornell University

Backup: Lepton Flavour Violation Details

LFV branching ratio in terms of analytical results:

$$
Br(\mu \to e\gamma) = \frac{3\alpha}{8\pi} |\mathcal{A}|^2 \qquad \mu^- \longrightarrow
$$

\nwhere, $\mathcal{A} = \sum_{\alpha=1}^3 \sum_{j=0}^N V_{\mu\alpha} V_{e\alpha}^* |(U_{L\alpha})^{0j}|^2 F\left(\frac{m_{j,\alpha}^2}{m_W^2}\right)$
\n
$$
F(x) = \frac{1}{6(1-x)^4} \left(10 - 43x + 78x^2 - 49x^3 + 4x^4 + 18x^3 \log x\right)
$$

\n
$$
\mathcal{A} = \left(\frac{y_3^2 v^2}{2m^2}\right) \cdot \left[\frac{V_{e3}^* V_{\mu 3} \Delta m_{32}^2 - V_{e1}^* V_{\mu 1} \Delta m_{21}^2}{m_{0,3}^2}\right] \cdot \mathcal{F}(m, q, N)
$$

\n
$$
\mathcal{F}(m, q, N) = \frac{1}{N+1} \sum_{k=1}^N \frac{C_k}{\lambda_k}, \left(F\left(\frac{m^2 \lambda_k}{m_W^2}\right) - F(0)\right)
$$

 γ

Backup: Chosen Benchmark Points

Backup: Cross-sections at colliders

Backup: Lepton colliders have clear signals

${\rm BP}$	\parallel U100 \parallel G100 \parallel U400 \parallel G300 \parallel U750 \parallel G750 \parallel U1000						
\sqrt{s} , GeV	\parallel 250		250 500		500 3000	$1\,3000$	3000
$\mathcal{L}_{3\sigma}$, fb ⁻¹	220	50 ¹	4300	20	55	25	720

Table 1: Center-of-mass energy and integrated luminosity required for a 3-sigma observation of the CW neutrino signal in electron-positron collisions.

