Clockwork Neutrinos

Gowri Kurup

Based on: S. Hong, G. Kurup, M. Perelstein [arXiv:1903.06191]

Cornell University

 $22~\mathrm{May},\,2019$

Outline of this talk

- Motivation
- Overview of the clockwork mechanism for fermions
- Analytical results: Spectrum and couplings
- Constraints on the model
- Generalized Clockwork
- Collider Signatures
- Conclusion

Motivation: A Dirac Mass for the Neutrino

- Neutrino masses are very small compared to other fermion masses in the SM
- Most popular model for small neutrino masses so far: the **see-saw** mechanism, which has Majorana mass terms
- Can we design a model with *only* **Dirac** masses, and naturally give very small masses for the SM neutrino?
- The Clockwork mechanism provides one such solution

Clockwork Theory

Possible to have hierarchically small neutrino masses from O(1) Lagrangian parameters. Theory with N+1 right-chiral & N left-chiral fermions + nearest-'neighbour' interactions:

$$\mathcal{L}_{cw} = \mathcal{L}_{kin} - m \sum_{i=1}^{N} \left(\psi_i^{\dagger} \chi_i - q \, \psi_i^{\dagger} \chi_{(i-1)} + h.c. \right) = \mathcal{L}_{kin} - \Psi^{\dagger} \tilde{M} X$$

$$\underbrace{\chi_{0}}_{(mq)_{0}} \underbrace{\chi_{1}}_{\psi_{1}} \cdots \underbrace{\chi_{N}}_{(mq)_{N-1}} \psi_{N} \qquad \tilde{M}^{\dagger} \tilde{M} = m^{2} \begin{pmatrix} q^{2} & -q & 0 & \cdots & 0 & 0 \\ -q & 1+q^{2} & -q & \cdots & 0 & 0 \\ 0 & -q & 1+q^{2} & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1+q^{2} & -q \\ 0 & 0 & 0 & \cdots & -q & 1 \end{pmatrix}$$

Clockwork Theory

Eigenvalues:
$$m_0^2 = 0$$
, $m_i^2 = m^2 \lambda_i = m^2 \left(1 + q^2 - 2q \cos \frac{i\pi}{N+1}\right)$
One massless mode from remaining chiral symmetry: $U(1)_L^N \times U(1)_R^{N+1} \to U(1)$

Clockwork Theory

Eigenvalues:
$$m_0^2 = 0$$
, $m_i^2 = m^2 \lambda_i = m^2 \left(1 + q^2 - 2q \cos \frac{i\pi}{N+1}\right)$
One massless mode from remaining chiral symmetry: $U(1)_L^N \times U(1)_R^{N+1} \to U(1)$

<u>Eigenvectors</u>: Oscillatory, except for **exponentially decreasing** zero mode:

$$(U_R)_{j0} = \frac{\mathcal{N}_0}{q^{N-j}}, \quad (U_R)_{jk} = \mathcal{N}_k \left[q \sin \frac{(N-j)k\pi}{N+1} - \sin \frac{(N-j+1)k\pi}{N+1} \right]$$
$$\mathcal{N}_0 \equiv \sqrt{\frac{q^2-1}{q^2-q^{-2N}}}, \quad \mathcal{N}_k \equiv \sqrt{\frac{2}{(N+1)\lambda_k}}$$

Clockwork Theory + SM

Exponentially small coupling of zero mode to 0th site $\propto \frac{1}{q^N} \Rightarrow$ Yukawa coupling to SM Higgs at $\sim \frac{yv}{q^N}$

This gives very small neutrino masses! e.g. q = 3, N = 20, $y = 0.01 \Rightarrow m_{\nu} \sim 0.5 \,\text{eV}$

$$M^{\dagger}M = m^{2} \begin{pmatrix} q^{2} + p^{2} & -q & 0 & \cdots & 0 & 0 \\ -q & 1 + q^{2} & -q & \cdots & 0 & 0 \\ 0 & -q & 1 + q^{2} & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 + q^{2} & -q \\ 0 & 0 & 0 & \cdots & -q & 1 \end{pmatrix}, \quad p = \frac{y \, v}{\sqrt{2}m} \qquad \begin{array}{c} \Rightarrow \text{No known} \\ \text{analytical} \\ \text{solution to} \\ \text{diagonalization} \\ \text{problem} \\ \end{array}$$

Large-N Expansion

Expand characteristic equation in $\frac{p q}{N} = \frac{y v}{\sqrt{2} m} \frac{q}{N}$

Mass eigenstates: (α is the flavour index)

Large-N Expansion

Charged current:

where,

$$\kappa_{0\beta} = 1 - \frac{p_{\beta}^2}{N+1} \sum_{k=1}^N \frac{C_k}{2\lambda_k}$$
$$\kappa_{j\beta} = -\frac{p_{\beta}}{\sqrt{\frac{1}{N+1} \frac{C_j}{\lambda_j}}}, j = 1 \dots N$$

Similar corrections to neutral current.

 ℓ

Eigenmodes and Mass Spectrum

Mass spectrum of N=15 Clockwork theories which give appropriate neutrino masses

i. Masses of the SM neutrinos

- i. Masses of the SM neutrinos:
 - Sum of masses from CMB data, $\sum_{i=1,2,3} m_{\nu_i} \lesssim 0.20 \text{ eV}$
 - Mass squared differences from oscillation data
 - For this talk, normal hierarchy with a nearly degenerate spectrum is chosen
 - (Constraints are similar for other spectra)

- i. Masses of the SM neutrinos
- ii. Lepton Flavour Violation

- i. Masses of the SM neutrinos
- ii. Lepton Flavour Violation: Strongest bound from $\mu \to e\gamma$ process:

$$\begin{array}{c} \text{Minimal} \\ \text{Flavour} \\ \text{Violation} \end{array} \right\} \quad BR(\mu \to e\gamma) = \frac{3\alpha_{em}}{8\pi} \left| \sum_{\alpha=1}^{3} \sum_{j=0}^{N} V_{\mu\alpha} V_{e\alpha}^{*} |(U_{L\alpha})^{0j}|^{2} F\left(\frac{m_{j,\alpha}^{2}}{m_{W}^{2}}\right) \right|^{2} \sim \frac{y^{4}v^{4}}{m^{4}}$$

T. P. Cheng, L.-F. Li - Phys. Rev. Lett. 45 (1980)

- i. Masses of the SM neutrinos
- ii. Lepton Flavour Violation
- iii. Precision Electroweak Constraints

- i. Masses of the SM neutrinos
- ii. Lepton Flavour Violation
- iii. Precision Electroweak Constraints:
 - Use α , m_Z , and Γ_{μ} as fixed inputs to determine g, g' and v, including shifts due to clockwork
 - Do χ^2 fit on other PEW observables
 - ⇒ Limit on fractional changes in SM neutrino gauge couplings Recall,

$$\left(J_W^{\mu+}\right)_0 = \frac{V_{\alpha\beta}}{\sqrt{2}} \overline{e}_{L\alpha} \gamma^{\mu} P_L \kappa_{0\beta} \mathcal{N}_{0\beta} + \mathcal{O}(p^3), \ \kappa_{0\beta} = 1 - \frac{p_{\beta}^2}{N+1} \sum_{k=1}^N \frac{C_k}{2\lambda_k}$$

$$\mathrm{N}=20$$

 $q~\epsilon~[2.32,4.64]$

Red contours: Mass of first excited state

Blue contours: Coupling of W-boson to first excited state

Generalized Clockwork Theory

q need not be a constant: $\mathcal{L} = \mathcal{L}_{kin} - m \sum_{j=0}^{N-1} (\psi_i^{\dagger} \chi_i - q(j) \psi_i^{\dagger} \chi_{(i-1)}) + \text{h.c.}$

(Symmetry breaking occurs for any $q \Rightarrow$ generically leads to exponentially small mass)

Generalized CW models can have more efficient suppression of zero mode + localization

Generalized Clockwork Theory

Generalized CW models can have more efficient suppression of zero mode + localization e.g.- For linearly increasing q, $(U_L)_{N0} \sim \frac{1}{N! q^N}$ (similar behaviour for linear decrease)

Masses in the generalized model examples we considered are generically more spread out, due to higher q values in the mass matrix.

Generalized Clockwork Theory

Generalized CW models can have more efficient suppression of zero mode + localization e.g.- For linearly increasing q, $(U_L)_{N0} \sim \frac{1}{N! q^N}$ (similar behaviour for linear decrease)

Uniform CW eigenmodes are oscillatory and spread out; generalized CW eigenmodes are localised.

Constraints for generalized clockwork

NT

Red contours: Mass of first excited state

Blue contours: Coupling of W-boson to first excited state

Collider Signatures

Hadron Colliders: 3l + MET

Lepton Colliders: ljj + MET

Higher mass of sterile neutrinos \Rightarrow high invariant mass and p_T for final products Lepton colliders: Can detect any reasonable CW model within kinematic range LHC: Low mass (~100 GeV) models are detectable with projected future luminosities

Collider Signatures

Universal Clockwork - Smeared out bump; Couplings to excited states are roughly similar; Resonance includes multiple states \Rightarrow shape analysis?

Generalized Clockwork

- Sharper bump; Higher coupling to lowest excited state; Resonances are separated, with much smaller significance for heavier neutrinos

Collider Analysis Example

LHC - 14 TeV ($\mathcal{L} = 3000 \ fb^{-1}$)	U	100	G100	
σ (fb) with parton-level cuts	0.66		1.39	
# of signal events	1965		4180	
Cuts:	S (fb)	BG (fb)	S (fb)	BG (fb)
Pre-selection cuts	0.29	93	0.62	93
$s_{12} < 80 { m ~GeV}$	0.13	13.5	0.38	13.5
$s_{23} < 80 {\rm ~GeV}$	0.12	8.7	0.37	8.7
$M_{rec} < 120 \text{ GeV}$	_	—	0.29	3.8
S/B	0.01		0.077	
S/\sqrt{B}	2.3		8.2	
$S/\sqrt{S+B}$	2.3		7.9	

 ℓ_1, ℓ_2 : Same Flavor Opposite Charge Leptons

 ℓ_3 : Same charge as ℓ_1

 M_{rec} : Mass reconstructed using W boson mass

Summary

- The Clockwork framework offers a way to get small Dirac neutrino masses from O(1) Lagrangian parameters
- Approximate analytical solutions to the eigenvalue problem have been obtained through large-N expansions/perturbation theory
- Large sections of the parameter space satisfy flavour and EW constraints
- Low mass CW models may be observable at HL-LHC, and most kinematically accessible models can be discovered at future lepton colliders
- Can be generalized to have interesting phenomenology, more efficient 'clockworking' and sharper collider signatures

Thank you!

See arXiv:1903.06191 for more details.

Gowri Kurup Cornell University

Backup: Lepton Flavour Violation Details

LFV branching ratio in terms of analytical results:

$$Br(\mu \to e\gamma) = \frac{3\alpha}{8\pi} |\mathcal{A}|^2 \qquad \mu^- \longrightarrow e^-$$
where, $\mathcal{A} = \sum_{\alpha=1}^3 \sum_{j=0}^N V_{\mu\alpha} V_{e\alpha}^* |(U_{L\alpha})^{0j}|^2 F\left(\frac{m_{j,\alpha}^2}{m_W^2}\right)$

$$F(x) = \frac{1}{6(1-x)^4} \left(10 - 43x + 78x^2 - 49x^3 + 4x^4 + 18x^3 \log x\right)$$

$$\mathcal{A} = \left(\frac{y_3^2 v^2}{2m^2}\right) \cdot \left[\frac{V_{e3}^* V_{\mu3} \Delta m_{32}^2 - V_{e1}^* V_{\mu1} \Delta m_{21}^2}{m_{0,3}^2}\right] \cdot \mathcal{F}(m,q,N)$$

$$\mathcal{F}(m,q,N) = \frac{1}{N+1} \sum_{k=1}^N \frac{C_k}{\lambda_k}, \left(F\left(\frac{m^2 \lambda_k}{m_W^2}\right) - F(0)\right)$$

γ _____

Backup: Chosen Benchmark Points

Name	N	q	m (GeV)	y	$m_1 \; (\text{GeV})$	g_1	$m_N \; ({\rm GeV})$
U100	20	3.45	40	[0.0207, 0.0209, 0.0269]	98.6	0.0014	177.7
U400	16	5.00	100	[0.0541, 0.0546, 0.0704]	402.1	0.0011	598.6
U750	17	4.70	200	[0.0947, 0.0956, 0.1232]	743.9	0.0010	1137.5
U1000	18	4.40	310	[0.1362, 0.1376, 0.1773]	1059.5	0.0009	1670.6
G100	10	2.60	40	[0.0178, 0.0180, 0.0232]	101.6	0.0182	1044.7
G300	11	2.05	160	[0.0373, 0.0377, 0.0485]	315.6	0.0122	3631.2
G750	11	2.20	360	[0.0811, 0.0819, 0.1055]	765.9	0.0109	8760.9

Backup: Cross-sections at colliders

BP	$pp \rightarrow 3\ell$	+MET	$e^+e^- \rightarrow \ell j j + MET$			
	$14 { m TeV}$	$100 { m TeV}$	$250 \mathrm{GeV}$	$500 \mathrm{GeV}$	3 TeV	
U100	0.66	4.2	7.4	12.8	3.9	
G100	1.40	8.6	4.3	7.4	1.34	
U400	3.0×10^{-3}	0.032	_	0.81	7.6	
G300	0.014	0.12	_	5.8	6.1	
U750	2.6×10^{-4}	5.0×10^{-3}	_	_	5.9	
G750	5.0×10^{-4}	8.0×10^{-3}	_	_	7.9	
U1000	5.0×10^{-5}	1.7×10^{-3}	_	—	2.3	

Backup: Lepton colliders have clear signals

BP	U100	G100	U400	G300	U750	G750	U1000
$\sqrt{s}, \text{ GeV}$	250	250	500	500	3000	3000	3000
$\mathcal{L}_{3\sigma}, \mathrm{fb}^{-1}$	220	50	4300	20	55	25	720

Table 1: Center-of-mass energy and integrated luminosity required for a 3-sigma observation of the CW neutrino signal in electron-positron collisions.

