



# Dark Matter searches with the ATLAS Detector

Bill Balunas

(University of Oxford)

on behalf of the ATLAS Collaboration

SUSY 2019 @ Corpus Christi May 22, 2019

## Overview

Introduction to the ATLAS dark matter strategy

Searches for DM production

Mediator-based searches

The SM Higgs as a mediator

Making sense of it all

Conclusions

## Background

#### WIMPs remain the "most popular" dark matter candidate.

 Generally expected that there should be some (small) interaction with SM particles.



#### For ~TeV masses and below, it should be possible to produce DM at the LHC.

- If the cross section isn't too small, we can measure this.
- Complements other methods, which can have limited sensitivity at lower DM masses and for some DM-nucleon scenarios.

## Background

#### 3 broad classes of DM models:

#### **Simplicity**



#### **Effective Field Theories**

 We don't know what the higher-scale physics is, but we can integrate it out.

#### "Simplified Models"

 We introduce a few additional degrees of freedom, but don't try to make statements about the complete theory.

#### **Complete Theories**

 We add a full set of new DoF's and expect them to explain everything (e.g. SUSY).

## Background

#### 3 broad classes of DM models:

#### **Simplicity**



#### **Effective Field Theories**

EFTs often have validity issues at LHC energy scales.

 We don't know what the higher-scale physics is, but we can integrate it out.

#### "Simplified Models"

I'll focus mainly on simplified models.

 We introduce a few additional degrees of freedom, but don't try to make statements about the complete theory.

#### **Complete Theories**

Typically require targeted model-specific searches.

More details in the various ATLAS SUSY talks!

 We add a full set of new DoF's and expect them to explain everything (e.g. SUSY).

## ATLAS Strategy

#### ATLAS has a broad program of searches for dark matter.

We often consider "simplified models" with an additional mediator\*.



In many cases, it's easier to search for the mediator in visible channels.  $q_q = \sqrt{Z_A} \qquad q_q = \sqrt{Z_A} \qquad q_q$ 

<sup>\*</sup>The SM Higgs can be the mediator, more on this later.

"Direct" Searches

### Jets + MET

#### LHC makes lots of jets, this is the most obvious place to look!

Jet required to boost the invisible system



#### JHEP 01 (2018) 126 (arXiv: 1711.03301)



Many models produce this signature!



Latest result is with 36.1 fb<sup>-1</sup> (2015+2016 dataset). Full Run-2 (140 fb<sup>-1</sup>) analysis in the works!

## Bosons + MET



## Heavy Flavor + MET

## Dedicated search for cases where the mediator couples preferentially to heavy-flavor quarks

Latest result (36.1 fb-1): <u>Eur. Phys. J. C 78 (2018) 18</u>, arXiv: <u>1710.11412</u>

Set limits on scalar/pseudoscalar models



## Mediator Searches

## Dijets

#### Most obvious place to look for mediators is the dijet final state.

New 140 fb-1 resonant result now public (ATLAS-CONF-2019-007)



#### Also, in previous results:

- Angular analysis for signals that aren't narrow resonances (Phys. Rev. D 96 (2017) 052004)
- b-jet-specific channel (Phys. Rev. D 98 (2018) 032016)

## Dijets - Probing lower masses

#### Standard dijet search is limited to high masses by trigger thresholds.

→ We use 2 methods to access lighter mediators:

#### **Trigger-Level Analysis**

## Save only trigger-level jet information to allow recording more events!



One Run-2 result so far with 29.3 fb-1

Phys. Rev. Lett. 121 (2018) 081801 (arXiv: 1804.03496)

#### **Boosted dijet system**

The latest: photon+dijet with 80 fb<sup>-1</sup>
- includes new b-tagged channel

Submitted to Phys. Lett. B (arXiv: 1901.10917)



SM physics provides the boost, so the recoiling object is model-independent.

See also: jet+di-bjet with 80 fb-1 (ATL-CONF-2018-052)

## **Dileptons**

#### Search for generic resonances which couple to leptons.

- Not "traditionally" thought of as a DM mediator search, but easy to reinterpret.
- New 140 fb-1 result submitted to Phys. Lett. B (arXiv: 1903.06248)



#### **Explore dilepton spectrum from 250 GeV – 6 TeV**

Earlier versions have gone down to 80 GeV.

## Top final states

#### Some models have the mediator preferentially coupling to top quarks.

Interpret various top-related searches in terms of DM mediators.

same-sign tt



JHEP 12 (2018) 039 arXiv: 1807.11883

36.1 fb<sup>-1</sup>

tī resonance



Eur. Phys. J. C 78 (2018) 565 arXiv: 1804.10823

36.1 fb<sup>-1</sup>

4-top production

SUSY search re-interpreted in terms of non-minimal 2HDM mediator scenarios

JHEP 09 (2017) 088 arXiv: 1704.08493

36.1 fb<sup>-1</sup>

# Higgs As The Mediator

## Higgs → Invisible

If DM couples directly to the Higgs and is lighter than ~62 GeV, then H can decay into pairs of DM particles.

VBF is currently the most sensitive channel for this at LHC.



Leverage VBF topology (forward jets) to discriminate against large SM backgrounds.

## Higgs → Invisible

Also search using W/Z associated production.

New combination with Run 1 + 2015 + 2016 data results!

BR(H $\to$ inv) < 26% (17<sup>+7</sup>/<sub>-5</sub> % expected)

Constraints weaker than Run 1 due to excesses in every Run 2 channel.

Full 140 fb<sup>-1</sup> analyses in the works, with final combination to follow.



Submitted to *Phys. Rev. Lett.* (arXiv: 1904.05105)

## Higgs → Invisible

Sensitivity complements direct detection at low DM mass.



Note: We don't have any searches for DM over ~60 GeV with the SM Higgs as the mediator!

# Putting It All Together

### Benchmark Models

#### **ATLAS's DM search program is really broad!**

 To help navigate, we've interpreted all of these in terms of a few benchmark scenarios:

#### (Pseudo)scalar mediator

- Neutral interaction
- Baryon-charged interaction
- Flavor-changing interaction

#### (Axial) vector mediator

- Color-neutral interaction
- Color-charged

#### **Extended Higgs sector**

- 2HDM + Vector
- 2HDM + Pseudoscalar

For full details, see our **new summary paper** (arXiv:<u>1903.01400</u>, accepted by *JHEP*)

## **Vector Models**

#### We've re-interpreted existing searches in terms of these models.

Exclusion plots computed for a few representative parameter choices.





## **Axial Vector Models**

Collider limits generally much stronger than direct detection for spin-dependent interactions!

Caveat: comparisons are model-dependent.



Shown here for DM-neutron interactions; protons look very similar.

## 2-Higgs-Doublet + Pseudoscalar Model

This model aims to be a little less "simplified" / more realistic.

Results in 3 new physical scalars (H,  $H^+$ ,  $H^-$ ), and 2 new pseudoscalars (a, A)





tan B

## Future Prospects

Many of the flagship dark matter searches are becoming systematics-limited now.

- Jet+MET, VBF H → invisible, etc.
- Taking full advantage of HL-LHC data will require improvements in reconstruction and analysis techniques (and in some cases, theoretical calculations).

A few DM searches automatically get a large benefit from statistics.

- Mainly channels which use EW or Higgs interactions (small cross sections)
- Z(→ll)H(→invisible), H(→γγ)+MET, etc.

We'll continue pursuing as broad a search program as we can through the end of the LHC lifetime.

Have an interesting idea we haven't covered? Let us know!

## Summary

Collider searches provide complementary coverage with respect to other methods (like direct detection).

ATLAS has a very broad dark matter search program!

- Includes searches for DM production as well as for mediators.
- Recently beginning to include less minimal models in our interpretations.

We recently released a new summary paper combining everything into a few benchmark interpretations.

Intended as the definitive reference for dark matter at ATLAS.

We're continuing to produce new results with the Run 2 dataset!