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Why looking for long-lived particles?

* 0. Long-lived particles from SM
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e Suppression from heavy mass scale: muon/charged pion

 Approximate symmetry & near degenerate state: K. to three
pions
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Why looking for long-lived particles?

1. Long-lived particles from beyond SM, e.g. SUSY

* Feeble couplings: R-parity violating Supersymmetry, sterile
neutrinos, portal models

* Suppression from heavy mass scale: gauge mediated
spontaneous breaking Supersymmetry

* Near degenerate state: higgsino-like chargino/neutralino, or
anomaly-mediated spontaneous breaking Supersymmetry



Why looking for long-lived particles at Collider?

e 2. Long-lived particle examples from dark sector

Collider Collider

SM DM

WIMP Hidden sector DM



Why looking for long-lived particles at Collider?

e 2. Long-lived particle examples from dark sector
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How to search for long-lived particles?

e Spatial discrimination: mostly related with displaced-vertex, and
track-based
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LLP searches at the LHC

 LLP has strong theoretical motivation.
* New proposals made for far detectors.

* We focus here on new approaches for searches at
existing detectors, i.e., ATLAS and CMS.

* | arger geometrical acceptance, but also large
background.

* Ample room for new ideas.



LLP basics: Geometrlcal acceptance

* Pin: Geometrical acceptance
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LLP basics: Geometrical acceptance
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LLP basics: Geometrical acceptance
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* Pin: Geometrical acceptance

| | | .
| LR e i T =R
ﬁ i 10" 1072 10" 10° 10" 10% 10® 10* 10° 10° 10" 10°

L le i lifeti
* The detector length Loz - L 0g scale In proper lifetime  (m)

Log scale in reach in model
parameters (e.g., Br H->XX)

e (. expected decay length of LLP in lab frame

We need e Longer detector (for larger lifetime),

e The larger solid angle (any lifetime)



LLP basics: Geometrical acceptance
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ATLAS/CMS

* (Closerto IP ( for smaller lifetime) * Inner detector, DV searches... %9
 Longer detector (for larger lifetime) ¢ ~ meter(s) <

e The larger solid angle (any lifetime) ¢ ~4m %



Challenges
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LHC already maximizes Pin in
all aspects except longer
detector length

Optimizing the efficiency factors to
realize the full power of LHC
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Timing upgrade proposals at LHC

Simulated Vertices
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30 ps resolution!

ATLAS: High Granularity Timing Detector (HGTD)
1804.00622 0.2
LHCb: Vertex Locator (VELO), high granularity 04

ECAL and Torch detector
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Time delay from LLP and detection proposal

* Long-lived particle X decay, X->ab
AN
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JL, Z. Liu, L.T. Wang, 1805.05957



Time delay from LLP and detection proposal

* Long-lived particle X decay, X->ab t !

Timing layer

bx Lo |fsm
At = =X | fa |TSM
Bx T Bal | Bom |

- SM bkg ref time L7,

Px S O(1) By ~ Bsm ~ 1 .
e | ower bound from slow X T,
fX l’ﬂX -1 vV VY
At>—=——==¢,p7'=1) T
py 1 X

e For CMS MTD size, Ix ~ 1.2 m ~ 4 ns JL, Z. Liu, L.T. Wang, 1805.05957

e LLPs (mass > 10 GeV) typically move much slower than speed of light
* LLPs have O(ns) time delay

* SM bkg time delay: Phase-2 time resolution 30 ps, Pile-up intrinsic resolution
190 ps

 LLPs are significantly delayed comparing with SM backgrounds!!!



Signal models

* Physics model: SM X
Y
* SigA (resonant Higgs): SM Higgs decay to two LLPs
_ _ | _ SM X or SM
e SigB (pair prod): GMSB SUSY long lived neutralino S\

SigA : pp — h h— X+ X, X — SM,

SigB : pp — XX 174 %0 = h+G — SM +G.

SM



Background

ISR jet
Time stamping PV

ISR jet Trackless jet 2
Time stamping PV

0..
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Trackless jet™.. e

Trackless jet 1
Fake displacedk‘ Fake diS|oIacedhA

‘e

Time delay from Time delay from
resolution of timing detector spread of the proton bunch
~ 30 ps ~ 190 ps

Other backgrounds: Interaction with material, Cosmic rays, Beam halo,
Satellite bunches. Many already have mature veto mechanism; need to revisit
to see the impact on timing.



Time delay distributions

Time delay at MTD from LHC
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LLP sensitivity for resonance production

SicA: pp—>h+7, h—>X+X, X — SM,

Precision Timing Enhanced Search Limit (HL-LHC)
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LLP sensitivity for resonance production

SigB:pp = xX+J, X0 = h+G—>SM+G

Precision Timing Enhanced Search Limit (HL-LHC)
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Challenges and opportunities

 To enable 30 ps resolution, require timestamp by ISR object or other prompt
product (squark -> g neutralino)

* Fine for central timing detector (large solid angle)

e Bad for forward timing detector (small solid angle)

o 0. REERNRRRRERRRN .

C B ]

e Without timestamp - directly cut on é 0.09F ATLAS + Data

. . o = Vs =13 TeV, 36.1 b I z->up simulation

large time delay, due to pile-up 190 5 0.08¢ :

ps resolution S 0.07F =
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* Fine for large LLP mass, bad for 0.05F =

small LLP mass 0.04 .

0.03F 3

* e.g. ATLAS MS: tile calorimeter 0.02f =

timing resolution is 1.3-1.7 ns, 0.01E E
RPCs 1.8 ns :
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Challenges and opportunities

 To enable 30 ps resolution, require timestamp by ISR object or other prompt

product (squark -> q neutralino)

* Fine for central timing detector (large solid angle)

e Bad for forward timing detector (small solid angle)

 Without timestamp - directly cut on

large time delay, due to pile-up 190
ps resolution

Fine for large LLP mass, bad for_
small LLP mass

ct (m

* e.g. ATLAS MS: tile calorimeter
timing resolution is 1.3-1.7 ns,
RPCs 1.8 ns.

Good enough for 10 ns timing
cut.

Precision Timing Enhanced Search Limit (HL-LHC)
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https://arxiv.org/pdf/1902.01636.pdf

Challenges and opportunities

Other SM backgrounds: Interactions with materials, cosmic
rays, beam halo, satellite beam etc

e Existing mature veto mechanism

* More handles in bkg rejection: MET at PV, ISR lepton, two
delayed objects...

Feedback from CMS collaboration
e CMS EXO-19-001 applies the timing techniques

e the first application of ECAL timing (~200 ps) to searching
for displaced jets from neutral long-lived particles.

e The above backgrounds are manageable!

23



CMS EXO-19-001 background study

CMS Preliminary 137 b (13 TeV)
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Timedelay is useful!
Background Prediction * Beam halo small
0.06 +0.05 .
Beam halo 0.027 5 (stat) g7 (syst) e Core and satellite bunches small but one
Core and satellite bunches  0.111902 (stat) 700> (syst) shall try to improve by precision timing
- +1. +18
Cosmics 1.077} (stat) £15 (syst) e Cosmics small (for this analysis, no need to

do cosmic veto further but there are many
o4 ways) and scale with time but not luminosity



CMS EXO-19-001 applies the timing techniques

Displaced
Methods
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Summary

LHC has great detectors for long-lived particle searches
Timing information helps to suppress BKG
* Generic feature (slow moving) for heavy LLP
 Powerful enough to allow search for single LLP decay

LLPs (even in the extremely long-lifetime limit) could be optimally searched
at the LHC main detectors

All existing LLP searches can be re-optimized using timing information
Precision timing is a new dimension of particle physics information available

for BSM searches. Further exploration is well motivated, exciting and will
significantly enhance discovery potential universally for LLPs

| | Thankyou!
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