Long-Lived Particles searches at the LHC with Timing information

Jia Liu

The Enrico Fermi Institute, University of Chicago

With Zhen Liu and Liantao Wang, <u>1805.05957</u> Phys.Rev.Lett. 122 (2019), 131801

SUSY 2019 @ Texas A&M University – Corpus Christi 2019-05-22

Why looking for long-lived particles?

• 0. Long-lived particles from SM

Credit: B. Shuve

- Suppression from heavy mass scale: muon/charged pion
- Approximate symmetry & near degenerate state: K_L to three pions

Why looking for long-lived particles?

• 1. Long-lived particles from beyond SM, e.g. SUSY

- Feeble couplings: R-parity violating Supersymmetry, sterile neutrinos, portal models
- Suppression from heavy mass scale: gauge mediated spontaneous breaking Supersymmetry
- Near degenerate state: higgsino-like chargino/neutralino, or anomaly-mediated spontaneous breaking Supersymmetry

Why looking for long-lived particles at Collider?

• 2. Long-lived particle examples from dark sector

Why looking for long-lived particles at Collider?

• 2. Long-lived particle examples from dark sector

Hidden sector DM

How to search for long-lived particles?

Spatial discrimination: mostly related with displaced-vertex, and track-based

LLP searches at the LHC

- LLP has strong theoretical motivation.
 - New proposals made for far detectors.
- We focus here on new approaches for searches at existing detectors, i.e., ATLAS and CMS.
 - Larger geometrical acceptance, but also large background.
 - Ample room for new ideas.

- d: expected decay length of LLP in lab frame $d=c au\gammaeta$

LLP basics: Geometrical acceptance

- The detector length $L_2 L_1$
- d: expected decay length of LLP in lab frame $d=c au\gammaeta$

LLP basics: Geometrical acceptance

- The detector length $L_2 L_1$
- d: expected decay length of LLP in lab frame
 - Closer to IP (for smaller lifetime)

- We need
- Longer detector (for larger lifetime),
- The larger solid angle (any lifetime)

LLP basics: Geometrical acceptance

- Closer to IP (for smaller lifetime) Inner detector, DV searches...
- Longer detector (for larger lifetime) ~ meter(s)
- The larger solid angle (any lifetime) $\sim 4 \pi$

- ATLAS/CMS

3

Challenges

LHC already maximizes *P*_{in} in all aspects except longer detector length

Optimizing the efficiency factors to realize the full power of LHC

Timing upgrade proposals at LHC

t (ns

 LHCC-P-009 ¹ 0.6
 CMS: MIP Timing Detector (MTD) in central region, High Granularity Calorimeter (HGCAL) in endcap ^{0.4} region. CMS-TDR-019

30 ps resolution!

- ATLAS: High Granularity Timing Detector (HGTD) 1804.00622
- LHCb: Vertex Locator (VELO), high granularity ECAL and Torch detector

LHCb: 1808.08865, B0->pi+ pi-

4D Reconstruction Vertices 4D Tracks -0.2 -15 -10 10 z (cm) PV reconstruction at LHC δt (ps) 800 600 400 200 -200 10 IP(mm) B0->pi+ pi- reconstruction at LHCb

Simulated Vertices

3D Reconstructed Vertices

 Good potential to benefit new physics searches! (Rest of this talk)

Time delay from LLP and detection proposal

Time delay from LLP and detection proposal

- LLPs (mass > 10 GeV) typically move much slower than speed of light
- LLPs have O(ns) time delay
- SM bkg time delay: Phase-2 time resolution 30 ps, Pile-up intrinsic resolution 190 ps
- LLPs are significantly delayed comparing with SM backgrounds!!!

Signal models

- Physics model:
 - SigA (resonant Higgs): SM Higgs decay to two LLPs
 - SigB (pair prod): GMSB SUSY long lived neutralino

SigA: $pp \to h + j$, $h \to X + X$, $X \to SM$, SigB: $pp \to \tilde{\chi}\tilde{\chi} + j$, $\tilde{\chi}_1^0 \to h + \tilde{G} \to SM + \tilde{G}$.

Background

Same vertex hard interaction

Pile up

Time delay from resolution of timing detector $\sim 30\ ps$

Time delay from spread of the proton bunch $\sim 190 \text{ ps}$

Other backgrounds: Interaction with material, Cosmic rays, Beam halo, Satellite bunches. Many already have mature veto mechanism; need to revisit to see the impact on timing.

Time delay distributions

• SM background time spread (Gaussian):

- Hard collision: ~30 ps
- Pile-up: ~190 ps

- Use timing cut to suppress SM background
 - Lower pt/MET threshold

LLP sensitivity for resonance production

SigA: $pp \rightarrow h + j$, $h \rightarrow X + X$, $X \rightarrow SM$,

LLP sensitivity for resonance production

SigB: $pp \to \tilde{\chi}\tilde{\chi} + j, \ \tilde{\chi}_1^0 \to h + \tilde{G} \to SM + \tilde{G}$

Challenges and opportunities

- To enable 30 ps resolution, require timestamp by ISR object or other prompt product (squark -> q neutralino)
 - Fine for central timing detector (large solid angle)
 - Bad for forward timing detector (small solid angle)
- Without timestamp directly cut on large time delay, due to pile-up 190 ps resolution
 - Fine for large LLP mass, bad for small LLP mass
 - e.g. ATLAS MS: tile calorimeter timing resolution is 1.3–1.7 ns, RPCs 1.8 ns

Challenges and opportunities

- To enable 30 ps resolution, require timestamp by ISR object or other prompt product (squark -> q neutralino)
 - Fine for central timing detector (large solid angle)
 - Bad for forward timing detector (small solid angle)
- Without timestamp directly cut on large time delay, due to pile-up 190 ps resolution
 - Fine for large LLP mass, bad for small LLP mass
 - e.g. ATLAS MS: tile calorimeter timing resolution is 1.3–1.7 ns, RPCs 1.8 ns.
 Good enough for 10 ns timing cut.

Challenges and opportunities

- Other SM backgrounds: Interactions with materials, cosmic rays, beam halo, satellite beam etc
 - Existing mature veto mechanism
 - More handles in bkg rejection: MET at PV, ISR lepton, two delayed objects...
- Feedback from CMS collaboration
 - CMS EXO-19-001 applies the timing techniques
 - the first application of ECAL timing (~200 ps) to searching for displaced jets from neutral long-lived particles.
 - The above backgrounds are manageable!

CMS EXO-19-001 background study

Background	Prediction
Beam halo	$0.02^{+0.06}_{-0.02}({ m stat}){}^{+0.05}_{-0.01}({ m syst})$
Core and satellite bunches	$0.11^{+0.09}_{-0.05}({ m stat}){}^{+0.02}_{-0.02}({ m syst})$
Cosmics	$1.0^{+1.8}_{-1.0}({ m stat}){}^{+1.8}_{-1.0}({ m syst})$

- Beam halo small
- Core and satellite bunches small but one shall try to improve by precision timing
- Cosmics small (for this analysis, no need to do cosmic veto further but there are many ways) and scale with time but not luminosity

CMS EXO-19-001 applies the timing techniques

Summary

- LHC has great detectors for long-lived particle searches
- Timing information helps to suppress BKG
 - Generic feature (slow moving) for heavy LLP
 - Powerful enough to allow search for single LLP decay
- LLPs (even in the extremely long-lifetime limit) could be optimally searched at the LHC main detectors
- All existing LLP searches can be re-optimized using timing information
- Precision timing is a new dimension of particle physics information available for BSM searches. Further exploration is well motivated, exciting and will significantly enhance discovery potential universally for LLPs

Thank you!