The status of HH searches at the LHC

International Conference on Supersymmetry and Unification of Fundamental Interactions (SUSY 2019)

Pawel Klimek on behalf of the ATLAS and CMS Collaborations

Northern Illinois University

May 20, 2019

Pawel Klimek (Northern Illinois University)

SM Higgs Boson Pair Production

- After discovering the Higgs boson, the ultimate probe of the Standard Model is to fully measure the Higgs potential
- Higgs self-coupling fundamental parameter of the Standard Model $V(\Phi) = \frac{1}{2}\mu^2\Phi^2 + \frac{1}{4}\lambda\Phi^4 = \lambda\nu^2h^2 + \lambda\nu h^3 + \frac{1}{4}\lambda h^4$ mass term self-coupling terms

Higgs-fermion Yukawa coupling (destructive interference)

00

(日) (同) (日) (日)

- Rare process of the Standard Model
 - Destructive interference
 - $\sigma_{\rm SM}(gg \to HH) = 33.5 \; {\rm fb} \approx 1\% \cdot \sigma_{\rm SM}(gg \to H)$ at 13 TeV

BSM Higgs Boson Pair Production

- Non-resonant HH production
 - BSM contribution can modify the Higgs boson coupling parameters and enhance the HH cross section
- Resonant HH production
 - Various models expect a new particle decaying into a Higgs boson pair
 - **•** Randall-Sundrum graviton (spin-2): $G \rightarrow hh$
 - 2HDM heavy Higgs boson (spin-0): $H \rightarrow hh$

Image: A match a ma

Higgs Boson Pair Decays

- Many final states to explore
- *bbbb*: largest branching fraction
- bbγγ and WWγγ: clean diphoton signature
- Searches in marked final states will be presented using:
 - ATLAS: 2015-2016 dataset, 36.1 fb⁻¹
 - CMS: 2016 dataset, 35.9 fb⁻¹
- Also, see Agni Bethani's talk on ATLAS searches for VH/HH resonances

イロト イポト イヨト イヨト

Searches for Higgs Boson Pair Production

Searches for Higgs Boson Pair Production in ATLAS

$HH \to bbbb$	JHEP 01 (2019) 030
$HH \rightarrow bbWW \rightarrow bbqq\ell\nu$	JHEP 04 (2019) 092
$HH \to bb\tau\tau$	Phys. Rev. Lett. 121, 191801 (2018)
$HH \rightarrow WWWW$	arXiv:1811.11028
$HH \rightarrow bb\gamma\gamma$	JHEP 11 (2018) 040
$HH \rightarrow WW\gamma\gamma$	Eur. Phys. J. C 78 (2018) 1007
Combination	New results paper in preparation

Searches for Higgs Boson Pair Production in CMS

JHEP 04 (2019) 112
JHEP 08 (2018) 152
arXiv:1904.04193
JHEP 01 (2018) 054
Phys. Lett. B 778 (2018) 101
Phys. Lett. B 788 (2018) 7
Phys. Rev. Lett. 122, 121803 (2019)

э

・ロト ・日下・ ・ ヨト・

$HH \rightarrow bbbb$ Analyses

- Largest branching ratio
- Resolved and boosted topologies considered
- ATLAS
 - Resolved: *b*-jet triggers, 4 *b*-tagged jets
 - Boosted: large-*R* jet trigger, 2 large-*R* jets, with 2/3/4 small-*R b*-tagged track-jets
 - Signal region: both Higgs candidate masses consistent with expected m_h within resolution
 - Discriminating variable: m_{hh} invariant mass

CMS

- Resolved: jet (including *b*-jet) triggers,
 4 *b*-tagged jets
- Boosted: jet (including b-jet) triggers, 2 large-R jets, dedicated MVA "double-b-tagger" used to identify Higgs candidates
- Discriminating variable: BDT score (resolved) and m_{hh} invariant mass (boosted)
- Main backgrounds: multi-jet and $t\bar{t}$

$HH \rightarrow bbbb$ Results

- Non-resonant hh production: observed (expected) 95% CL upper limit on σ(hh) × BR(bbbb):
 - ATLAS: 147 fb = $12.9 \cdot \sigma_{\rm SM}$ (20.7 $\cdot \sigma_{\rm SM}$)
 - CMS: 847 fb (419 fb)
- Resonant *hh* production: 2HDM interpretation:
 - No significant excess observed
 - ATLAS: largest deviation at 280 GeV, 3.6σ local (2.3σ global) significance
 - CMS: largest deviation at 460 GeV, 2.6σ local significance

$HH \rightarrow bbWW$ Analyses

- ATLAS ($bbqq\ell\nu$)
 - Resolved: 1 ℓ, E^{miss}, 4 small-*R* jets (2 *b*-jets)
 - Boosted: 1 ℓ , $E_{\rm T}^{\rm miss}$, 1 large-R *b*-jet, 2 small-R jets
 - Discriminating variable: m_{HH} invariant mass

CMS

- $bbqq\ell\nu$:
 - 1 ℓ, E^{miss}_T, 1 large-R b-jet, 1 large-R jet
 - Likelihood fit in 2D plane of m_{bb} and m_{HH}

• $bb\ell\nu\ell\nu$:

- 2 OS leptons (e or µ), 2 b-tagged jets
- Discriminating variable: DNN output
- Dominant backgrounds: tt
 t t W+jets, multi-jet

$HH \rightarrow bbWW$ Results

- Non-resonant *hh* production: observed limits
 - ATLAS $\sigma(hh) \times BR(bbWW) = 2.5 \text{ pb} (300\sigma_{SM})$
 - CMS $\sigma(hh) \times BR(bb\ell\nu\ell\nu) = 72 \text{ fb} (79 \cdot \sigma_{SM})$
- Resonant *hh* production: 2HDM interpretation:
 - ATLAS ($bbqq\ell\nu$): set limits between 5.6 pb ($m_X = 500 \text{ GeV}$) and 0.2 pb ($m_X = 3 \text{ TeV}$)
 - CMS ($bbqq\ell\nu$): set limits between 123 fb ($m_X = 800 \text{ GeV}$) and 8.3 fb ($m_X = 3.5 \text{ TeV}$)
 - CMS ($bb\ell\nu\ell\nu$): set limits between 430 fb

 $(m_X = 260 \text{ GeV})$ and 17 fb $(m_X = 900 \text{ GeV})$

Pawel Klimek (Northern Illinois University)

The status of HH searches at the LHC

Events / I

10

10

10

Data/Pred

dN/dm_{T2} [GeV⁻¹]

 10^{3}

10

10

10-3

10

10-1013 TeV 36 1 fb⁻¹

hard Thard 2 b-tags

.....

-0.6 - 0.4 - 0.2

CMS

channel

$HH \rightarrow bb\tau\tau$ Analyses

- ATLAS
 - Two channels:
 - two hadronicaly decaying taus
 - one hadronicaly and one leptonicaly decaving tau
 - 2 taus (at least one hadronicaly decaying), 2 small-R or 1 large-R b-jets
 - BDT trained to discriminate signal from backgrounds, separate BDT for each mass hypothesis
 - Discriminating variable: BDT score
- CMS
 - Two channels:
 - two hadronicaly decaying taus
 - one hadronicaly and one leptonicaly decaying tau
 - $e/\mu/\tau_{\rm h}+\tau_{\rm h}$, 2 small-R or 1 large-R b-jets
 - Discriminating variable: m_{HH}^{KinFit} (resonant). $m_{\rm T2}$ (non-resonant)

Dominant backgrounds: $t\bar{t}$, multi-jet, Z+jets

NR HH at exp limit

iet $\rightarrow \tau$... fakes (tt) SM Higgs

iet $\rightarrow \tau$... fakes (Multi-iets) $Z \rightarrow \tau \tau + (bb, bc, cc)$

Top-guark

W Uncertainty

0.2 0.4

BDT score

····· Pre-fit background

$HH \rightarrow bb\tau\tau$ Results

- Non-resonant hh production: observed (expected) 95% CL upper limits on $\sigma(hh) \times BR(bb\tau\tau)$:
 - ATLAS: 30.9 fb = $12.7 \cdot \sigma_{\rm SM}$ (36.0 fb)
 - CMS: 75.4 fb = $30 \cdot \sigma_{\rm SM}$ (61.0 fb)
- Resonant *hh* production: hMSSM interpretation:
 - No significant excess observed
 - ATLAS: masses between 305 GeV and 402 GeV excluded for $\tan \beta = 2$
 - CMS: masses between 230 GeV and 360 GeV excluded for tan β = 1
- The $\tan\beta$ is the ratio of the vacuum expectation values of the two Higgs doublets

$HH \rightarrow WWWW$ Analyses

- Cut and count analysis
- Three channels defined by number of leptons
 - Two (same sign) leptons: $ee, e\mu$, $\mu\mu$, $E_{\rm T}^{\rm miss}$, at least two jets, b-jet veto
 - Three leptons: total charge ± 1 , $E_{\rm T}^{\rm miss}$, at least two jets, *b*-jet veto
 - Four leptons: total charge 0, *b*-jet veto
- Dominant backgrounds: Diboson, tV, ttV/H and VVV, W+jets, $t\bar{t}$

$HH \rightarrow WWWW$ Results

- Non-resonant hh production: observed (expected) 95% CL upper limits on σ(hh):
 - ATLAS: 5.3 pb = 160· $\sigma_{\rm SM}$ (3.8 pb)
- Resonant *hh* production: 2HDM interpretation:
 - No significant excess observed
 - ATLAS: set limits between 9.3 pb $(m_X = 260 \text{ GeV})$ and 2.8 pb $(m_X = 500 \text{ GeV})$

$HH \rightarrow bb\gamma\gamma$ Analyses

ATLAS

- 2 photons, 2 jets (1 or 2 b-tags)
- *m_{jj}* invariant mass compatible with the mass of the Higgs boson
- Discriminating variables: m_{γγ} (non-resonant) and m_{γγjj} (resonant)
- Particularly sensitive at low masses

CMS

- 2 photons, 2 jets
- $m_{\gamma\gamma}$ and m_{jj} in Higgs mass window
- BDT classifier, including b-tagging information to select signal-like events
- Discriminating variable: $m_{\gamma\gamma}$ and m_{jj}
- Dominant backgrounds: *γγ*-continuum, single Higgs

$HH \rightarrow bb\gamma\gamma$ Results

- Non-resonant hh production: observed (expected) 95% CL upper limits on σ(hh):
 - ATLAS: 0.73 pb = $22 \cdot \sigma_{SM}$ (0.93 pb)
 - CMS: 0.79 pb = $24 \cdot \sigma_{SM}$ (0.63 pb)
- Resonant *hh* production: 2HDM interpretation:
 - No significant excess observed
 - ATLAS: set limits between 1.14 pb $(m_X = 260 \text{ GeV})$ and 0.12 pb $(m_X = 1 \text{ TeV})$
 - CMS: set limits between 0.23 fb $(m_X = 250 \text{ GeV})$ and 4.2 fb $(m_X = 750 \text{ GeV})$

$HH \rightarrow WW\gamma\gamma$ Analyses

- 2 photons, 1 e or μ , 2 jets $(WW \rightarrow \ell \nu qq)$
- Parameterized fit to $m_{\gamma\gamma}$
- Dominant backgrounds: *γγ*-continuum, single Higgs

$HH \rightarrow WW\gamma\gamma$ Results

- Non-resonant hh production: observed (expected) 95% CL upper limit on $\sigma(hh) \times BR(WW\gamma\gamma)$
 - ATLAS: 7.5 fb = $230 \cdot \sigma_{\rm SM}$ (5.3 fb)
- Resonant *hh* production: 2HDM interpretation:
 - No significant excess observed
 - ATLAS: set limits between 40 pb $(m_X = 260 \text{ GeV})$ and 6.1 pb $(m_X = 500 \text{ GeV})$

Combinations

Non-resonant $HH\ {\rm production}$

- Statistical combination of the most sensitive individual channels
- ATLAS new results:
 - $\blacksquare \ HH \to bbbb$
 - $\blacksquare HH \rightarrow bbWW$
 - $\blacksquare ~HH \rightarrow bb\tau\tau$
 - $\blacksquare HH \to WWWW$
 - $\blacksquare ~ HH \rightarrow bb\gamma\gamma$
 - $\blacksquare \ HH \to WW\gamma\gamma$
 - Observed: $6.9 \cdot \sigma_{\rm SM}$
 - Expected: $10.0 \cdot \sigma_{\rm SM}$

CMS:

- $\blacksquare \ HH \to bbbb$
- $\blacksquare ~HH \rightarrow bb\tau\tau$

$$\blacksquare HH \to bb\gamma\gamma$$

- $HH \rightarrow bbVV \ (V = W \text{ or } Z)$
- Observed: $22.2 \cdot \sigma_{\rm SM}$
- Expected: $12.8 \cdot \sigma_{\rm SM}$

Combinations

Limits on κ_{λ}

- Combined limits on $\kappa_{\lambda} = \lambda_{HHH} / \lambda_{SM}$
- All couplings except the Higgs boson self-coupling λ_{HHH} set to their SM values
- ATLAS allowed range:
 - Observed: $-5.0 < \kappa_{\lambda} < 12.0$
 - Expected: $-5.8 < \kappa_{\lambda} < 12.0$
- CMS allowed range:
 - Observed: $-11.8 < \kappa_{\lambda} < 18.8$
 - Expected: $-7.1 < \kappa_{\lambda} < 13.6$

Combinations

Resonant HH production

- Combined limits on scalar resonance corresponding to CP-even heavy Higgs in hMSSM (2HDM) model
- No significant excess observed
- ATLAS: set upper limits between
 4 fb and 1 pb
- CMS: set upper limits between 4 fb and 2 pb

Conclusions & Summary

- ATLAS and CMS are highly active in searching for Higgs boson pair production. Effort to cover maximum final states.
- Shown recent searches based on 36.1 fb⁻¹ (ATLAS) and 35.9 fb⁻¹ (CMS) of LHC Run-2 data
- Improved sensitivity using boosted techniques and machine learning
- \blacksquare No excess in non-resonant production, limits 6.9 $22.2 \cdot \sigma_{\rm SM}$
- No significant excess observed in resonance search
- Analyzing full Run-2 dataset, 140 fb⁻¹

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・