The status of HH searches at the LHC

International Conference on Supersymmetry and Unification of Fundamental Interactions (SUSY 2019)

Pawel Klimek
on behalf of the ATLAS and CMS Collaborations

Northern Illinois University

May 20, 2019
SM Higgs Boson Pair Production

- After discovering the Higgs boson, the ultimate probe of the Standard Model is to fully measure the Higgs potential

- Higgs self-coupling fundamental parameter of the Standard Model

\[
V(\Phi) = \frac{1}{2} \mu^2 \Phi^2 + \frac{1}{4} \lambda \Phi^4 = \lambda \nu^2 h^2 + \lambda \nu h^3 + \frac{1}{4} \lambda h^4
\]

- Rare process of the Standard Model
 - Destructive interference
 - \(\sigma_{SM}(gg \rightarrow HH) = 33.5 \text{ fb} \approx 1\% \cdot \sigma_{SM}(gg \rightarrow H) \) at 13 TeV
BSM Higgs Boson Pair Production

- Non-resonant HH production
 - BSM contribution can modify the Higgs boson coupling parameters and enhance the HH cross section

- Resonant HH production
 - Various models expect a new particle decaying into a Higgs boson pair
 - Randall-Sundrum graviton (spin-2): $G \rightarrow hh$
 - 2HDM heavy Higgs boson (spin-0): $H \rightarrow hh$
Higgs Boson Pair Decays

- Many final states to explore
 - $bbbb$: largest branching fraction
 - $bb\gamma\gamma$ and $WW\gamma\gamma$: clean diphoton signature
- Searches in marked final states will be presented using:
 - ATLAS: 2015-2016 dataset, 36.1 fb$^{-1}$
 - CMS: 2016 dataset, 35.9 fb$^{-1}$
- Also, see Agni Bethani’s talk on ATLAS searches for VH/HH resonances

<table>
<thead>
<tr>
<th></th>
<th>bb</th>
<th>WW</th>
<th>$\tau\tau$</th>
<th>ZZ</th>
<th>$\gamma\gamma$</th>
</tr>
</thead>
<tbody>
<tr>
<td>bb</td>
<td>33%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WW</td>
<td></td>
<td>25%</td>
<td></td>
<td>4.8%</td>
<td></td>
</tr>
<tr>
<td>$\tau\tau$</td>
<td></td>
<td></td>
<td>7.4%</td>
<td></td>
<td>0.39%</td>
</tr>
<tr>
<td>ZZ</td>
<td>3.1%</td>
<td></td>
<td>1.2%</td>
<td>0.34%</td>
<td>0.076%</td>
</tr>
<tr>
<td>$\gamma\gamma$</td>
<td>0.26%</td>
<td>0.10%</td>
<td>0.029%</td>
<td>0.013%</td>
<td>0.0053%</td>
</tr>
</tbody>
</table>
Searches for Higgs Boson Pair Production

Searches for Higgs Boson Pair Production in ATLAS

<table>
<thead>
<tr>
<th>Process</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H H \rightarrow bbbb$</td>
<td>JHEP 01 (2019) 030</td>
</tr>
<tr>
<td>$H H \rightarrow bbWW \rightarrow bbqq\ell\nu$</td>
<td>JHEP 04 (2019) 092</td>
</tr>
<tr>
<td>$H H \rightarrow bb\tau\tau$</td>
<td>Phys. Rev. Lett. 121, 191801 (2018)</td>
</tr>
<tr>
<td>$H H \rightarrow WWWW$</td>
<td>arXiv:1811.11028</td>
</tr>
<tr>
<td>$H H \rightarrow bb\gamma\gamma$</td>
<td>JHEP 11 (2018) 040</td>
</tr>
<tr>
<td>$H H \rightarrow WW\gamma\gamma$</td>
<td>Eur. Phys. J. C 78 (2018) 1007</td>
</tr>
<tr>
<td>Combination</td>
<td>New results paper in preparation</td>
</tr>
</tbody>
</table>

Searches for Higgs Boson Pair Production in CMS

<table>
<thead>
<tr>
<th>Process</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H H \rightarrow bbbb$ non-resonant</td>
<td>JHEP 04 (2019) 112</td>
</tr>
<tr>
<td>$H H \rightarrow bbbb$ resonant</td>
<td>JHEP 08 (2018) 152</td>
</tr>
<tr>
<td>$H H \rightarrow bbqq\ell\nu$</td>
<td>arXiv:1904.04193</td>
</tr>
<tr>
<td>$H H \rightarrow bbl\nu\ell\nu$</td>
<td>JHEP 01 (2018) 054</td>
</tr>
<tr>
<td>$H H \rightarrow bb\tau\tau$</td>
<td>Phys. Lett. B 778 (2018) 101</td>
</tr>
<tr>
<td>$H H \rightarrow bb\gamma\gamma$</td>
<td>Phys. Lett. B 788 (2018) 7</td>
</tr>
</tbody>
</table>
HH → bbbb Analyses

- Largest branching ratio
- Resolved and boosted topologies considered
- **ATLAS**
 - Resolved: b-jet triggers, 4 b-tagged jets
 - Boosted: large-R jet trigger, 2 large-R jets, with 2/3/4 small-R b-tagged track-jets
 - Signal region: both Higgs candidate masses consistent with expected m_h within resolution
 - Discriminating variable: m_{hh} invariant mass
- **CMS**
 - Resolved: jet (including b-jet) triggers, 4 b-tagged jets
 - Boosted: jet (including b-jet) triggers, 2 large-R jets, dedicated MVA “double-b-tagger” used to identify Higgs candidates
 - Discriminating variable: BDT score (resolved) and m_{hh} invariant mass (boosted)
- Main backgrounds: multi-jet and $t\bar{t}$
HH → bbbb Results

- **Non-resonant hh production:** observed (expected) 95% CL upper limit on $\sigma(hh) \times BR(bbbb)$:
 - ATLAS: 147 fb $= 12.9 \cdot \sigma_{SM}$ (20.7 $\cdot \sigma_{SM}$)
 - CMS: 847 fb (419 fb)

- **Resonant hh production:** 2HDM interpretation:
 - No significant excess observed
 - ATLAS: largest deviation at 280 GeV, 3.6σ local (2.3σ global) significance
 - CMS: largest deviation at 460 GeV, 2.6σ local significance
$HH \rightarrow bbWW$ Analyses

- **ATLAS ($bbqq\ell\nu$)**
 - Resolved: 1 ℓ, E_T^{miss}, 4 small-R jets (2 b-jets)
 - Boosted: 1 ℓ, E_T^{miss}, 1 large-R b-jet, 2 small-R jets
 - Discriminating variable: m_{HH} invariant mass

- **CMS**
 - $bbqq\ell\nu$:
 - 1 ℓ, E_T^{miss}, 1 large-R b-jet, 1 large-R jet
 - Likelihood fit in 2D plane of m_{bb} and m_{HH}
 - $bb\ell\nu\ell\nu$:
 - 2 OS leptons (e or μ), 2 b-tagged jets
 - Discriminating variable: DNN output

- Dominant backgrounds: tt, W+jets, multi-jet
$HH \rightarrow bbWW$ Results

- **Non-resonant hh production:** observed limits
 - ATLAS $\sigma(hh) \times BR(bbWW) = 2.5$ pb ($300\sigma_{SM}$)
 - CMS $\sigma(hh) \times BR(bbl\nu\ell\nu) = 72$ fb ($79\cdot\sigma_{SM}$)

- **Resonant hh production:** 2HDM interpretation:
 - ATLAS ($bbqq\ell\nu$): set limits between 5.6 pb ($m_X = 500$ GeV) and 0.2 pb ($m_X = 3$ TeV)
 - CMS ($bbqq\ell\nu$): set limits between 123 fb ($m_X = 800$ GeV) and 8.3 fb ($m_X = 3.5$ TeV)
 - CMS ($bbl\nu\ell\nu$): set limits between 430 fb ($m_X = 260$ GeV) and 17 fb ($m_X = 900$ GeV)
HH → bbττ Analyses

ATLAS
- Two channels:
 - two hadronically decaying taus
 - one hadronically and one leptonically decaying tau
- 2 taus (at least one hadronically decaying), 2 small-R or 1 large-R b-jets
- BDT trained to discriminate signal from backgrounds, separate BDT for each mass hypothesis
- Discriminating variable: BDT score

CMS
- Two channels:
 - two hadronically decaying taus
 - one hadronically and one leptonically decaying tau
- $e/\mu/\tau_h + \tau_h$, 2 small-R or 1 large-R b-jets
- Discriminating variable: $m_{HH}^{K_{in}F}$ (resonant), m_{T2} (non-resonant)
- Dominant backgrounds: $t\bar{t}$, multi-jet, $Z+\text{jets}$
HH → bbττ Results

- **Non-resonant hh production**: observed (expected) 95% CL upper limits on $\sigma(hh) \times BR(bb\tau\tau)$:
 - **ATLAS**: $30.9 \text{ fb} = 12.7 \cdot \sigma_{SM} \ (36.0 \text{ fb})$
 - **CMS**: $75.4 \text{ fb} = 30 \cdot \sigma_{SM} \ (61.0 \text{ fb})$

- **Resonant hh production**: hMSSM interpretation:
 - No significant excess observed
 - **ATLAS**: masses between 305 GeV and 402 GeV excluded for $\tan \beta = 2$
 - **CMS**: masses between 230 GeV and 360 GeV excluded for $\tan \beta = 1$

- The $\tan \beta$ is the ratio of the vacuum expectation values of the two Higgs doublets
HH → WWWW Analyses

- Cut and count analysis
- Three channels defined by number of leptons
 - Two (same sign) leptons: ee, $e\mu$, $\mu\mu$, E_T^{miss}, at least two jets, b-jet veto
 - Three leptons: total charge ± 1, E_T^{miss}, at least two jets, b-jet veto
 - Four leptons: total charge 0, b-jet veto
- Dominant backgrounds: Diboson, tV, ttV/H and VVV, $W+\text{jets}$, $tt\bar{t}$
$HH \rightarrow WWWW$ Results

- **Non-resonant hh production:** observed (expected) 95% CL upper limits on $\sigma(hh)$:
 - ATLAS: $5.3 \text{ pb} = 160 \cdot \sigma_{\text{SM}} (3.8 \text{ pb})$

- **Resonant hh production:** 2HDM interpretation:
 - No significant excess observed
 - ATLAS: set limits between 9.3 pb ($m_X = 260 \text{ GeV}$) and 2.8 pb ($m_X = 500 \text{ GeV}$)
HH → bbγγ Analyses

- **ATLAS**
 - 2 photons, 2 jets (1 or 2 b-tags)
 - m_{jj} invariant mass compatible with the mass of the Higgs boson
 - Discriminating variables: $m_{\gamma\gamma}$ (non-resonant) and $m_{\gamma\gamma jj}$ (resonant)
 - Particularly sensitive at low masses

- **CMS**
 - 2 photons, 2 jets
 - $m_{\gamma\gamma}$ and m_{jj} in Higgs mass window
 - BDT classifier, including b-tagging information to select signal-like events
 - Discriminating variable: $m_{\gamma\gamma}$ and m_{jj}

- Dominant backgrounds:
 - $\gamma\gamma$-continuum, single Higgs
HH → bbγγ Results

- **Non-resonant hh production:** observed (expected) 95% CL upper limits on $\sigma(hh)$:
 - ATLAS: $0.73 \text{ pb} = 22 \cdot \sigma_{SM} (0.93 \text{ pb})$
 - CMS: $0.79 \text{ pb} = 24 \cdot \sigma_{SM} (0.63 \text{ pb})$

- **Resonant hh production:** 2HDM interpretation:
 - No significant excess observed
 - ATLAS: set limits between 1.14 pb ($m_X = 260 \text{ GeV}$) and 0.12 pb ($m_X = 1 \text{ TeV}$)
 - CMS: set limits between 0.23 fb ($m_X = 250 \text{ GeV}$) and 4.2 fb ($m_X = 750 \text{ GeV}$)
HH → WWγγ Analyses

- 2 photons, 1 e or μ, 2 jets ($WW → ℓνqq$)

- Parameterized fit to $m_{γγ}$

- Dominant backgrounds: $γγ$-continuum, single Higgs
HH → WWγγ Results

- **Non-resonant hh production:** observed (expected) 95% CL upper limit on $\sigma(hh) \times BR(WWγγ)$
 - ATLAS: 7.5 fb = $230 \cdot \sigma_{SM}$ (5.3 fb)

- **Resonant hh production:** 2HDM interpretation:
 - No significant excess observed
 - ATLAS: set limits between 40 pb ($m_X = 260$ GeV) and 6.1 pb ($m_X = 500$ GeV)
Combinations

Non-resonant HH production

- Statistical combination of the most sensitive individual channels

ATLAS new results:

- $HH \rightarrow bbbb$
- $HH \rightarrow bbWW$
- $HH \rightarrow bb\tau\tau$
- $HH \rightarrow WWWW$
- $HH \rightarrow bb\gamma\gamma$
- $HH \rightarrow WW\gamma\gamma$

- Observed: $6.9 \cdot \sigma_{SM}$
- Expected: $10.0 \cdot \sigma_{SM}$

CMS:

- $HH \rightarrow bbbb$
- $HH \rightarrow bb\tau\tau$
- $HH \rightarrow bb\gamma\gamma$
- $HH \rightarrow bbVV \ (V = W \ or \ Z)$

- Observed: $22.2 \cdot \sigma_{SM}$
- Expected: $12.8 \cdot \sigma_{SM}$
Combinations

Limits on $\kappa \lambda$

- Combined limits on $\kappa \lambda = \lambda_{HHH}/\lambda_{SM}$
- All couplings except the Higgs boson self-coupling λ_{HHH} set to their SM values

- ATLAS allowed range:
 - Observed: $-5.0 < \kappa \lambda < 12.0$
 - Expected: $-5.8 < \kappa \lambda < 12.0$

- CMS allowed range:
 - Observed: $-11.8 < \kappa \lambda < 18.8$
 - Expected: $-7.1 < \kappa \lambda < 13.6$
Combinations
Resonant HH production

- Combined limits on scalar resonance corresponding to CP-even heavy Higgs in hMSSM (2HDM) model
- No significant excess observed
- ATLAS: set upper limits between 4 fb and 1 pb
- CMS: set upper limits between 4 fb and 2 pb
Conclusions & Summary

- ATLAS and CMS are highly active in searching for Higgs boson pair production. Effort to cover maximum final states.

- Shown recent searches based on 36.1 fb^{-1} (ATLAS) and 35.9 fb^{-1} (CMS) of LHC Run-2 data

- Improved sensitivity using boosted techniques and machine learning

- No excess in non-resonant production, limits $6.9 - 22.2 \cdot \sigma_{\text{SM}}$

- No significant excess observed in resonance search

- Analyzing full Run-2 dataset, 140 fb^{-1}