Minimal SO(10)-based GUT

Marcus Pernow

KTH Royal Institute of Technology, Stockholm, Sweden

SUSY2019

20 May 2019

Based on: Boucenna, Ohlsson, MP 1812.10548 Ohlsson, MP 1903.08241

Motivation

Open questions in the Standard Model

- Neutrino masses
- Dark matter
- Baryon asymmetry of the universe
- Higgs vacuum stability

Motivation

Open questions in the Standard Model

- Neutrino masses
- Dark matter
- Baryon asymmetry of the universe
- Higgs vacuum stability
- Why three gauge groups?
- Near unification of gauge couplings
- Fermion charge assignment
- Anomaly cancellation

20 May 2019 1 / 13

SO(10) Grand Unified Theory

Fritzsch, Minkowski 1975

$SO(10) \supset SU(3)_C \times SU(2)_L \times U(1)_Y$

- Three gauge groups unified
- Gauge coupling unification
- Anomalies vanish identically

Fermionic representation

$$\begin{array}{c} {\bf 16}_{\it F} \rightarrow ({\bf 3},{\bf 2})_{1/6} \oplus (\overline{\bf 3},{\bf 1})_{1/3} \oplus (\overline{\bf 3},{\bf 1})_{-2/3} \oplus ({\bf 1},{\bf 2})_{-1/2} \oplus ({\bf 1},{\bf 1})_1 \oplus ({\bf 1},{\bf 1})_0 \\ Q_L \ + \ u_R^c \ + \ d_R^c \ + \ \ell_L \ + \ e_R^c \ + \ N_R^c \end{array}$$

- One fermionic representation
- Right-handed neutrinos
- Relation between hypercharges

Gauge Coupling Unification

How do we unify the coupling constants without SUSY ...?

Gauge Coupling Unification

Gauge Coupling Unification in One Step

 $M_1 = 3.1 \,\mathrm{TeV}$ $M_2 = 2.34 imes 10^8 \,\mathrm{GeV}$ $M_{\mathrm{GUT}} = 4.51 imes 10^{15} \,\mathrm{GeV}$

 M_2 and M_{GUT} determined uniquely by M_1 and requirement of gauge coupling unification

Similar constructions in: Frigerio, Hambye 0912.1545 Parida et al. 1608.03956

Babu et al. hep-ph/0506312

M. Pernow (KTH)

20 May 2019 5 / 13

M. Pernow (KTH)

M. Pernow (KTH)

M. Pernow (KTH)

Fermion Masses

Higgs

- Higgs $H_u = (\mathbf{1}, \mathbf{2})_{1/2}$ and $H_d = (\mathbf{1}, \mathbf{2})_{-1/2}$ reside in $\mathbf{10}_H$ and $\overline{\mathbf{126}}_H$
- SM Higgs doublet is a combination of these
- Yukawa Lagrangian $\mathbf{16}_F(Y_{10}\mathbf{10}_H + Y_{126}\overline{\mathbf{126}}_H)\mathbf{16}_F$

Fermion Masses

Higgs

- Higgs $H_u = (\mathbf{1}, \mathbf{2})_{1/2}$ and $H_d = (\mathbf{1}, \mathbf{2})_{-1/2}$ reside in $\mathbf{10}_H$ and $\overline{\mathbf{126}}_H$
- SM Higgs doublet is a combination of these
- Yukawa Lagrangian $\mathbf{16}_F(Y_{10}\mathbf{10}_H + Y_{126}\overline{\mathbf{126}}_H)\mathbf{16}_F$

Neutrino Masses

- Neutrino Dirac mass through $\overline{\ell_L}H_uN_R$
- $\sigma \equiv (\mathbf{1}, \mathbf{1})_0 \subset \overline{\mathbf{126}}_H$ gives Majorana mass through $\sigma \overline{N_R^c} N_R$
- Type-I seesaw
- (Type-II seesaw also possible using $\Delta_L \equiv ({f 1},{f 3})_{-1} \subset \overline{{f 126}}_H)$

Accommodating the SM parameters

Bajc et al. hep-ph/0510139 Altarelli, Meloni 1305.1001 Babu, Khan 1507.06712

Babu et al. 1612.04329

- $\mathbf{10}_H$ is a real representation $\implies v_{10}^u = v_{10}^d$. Not enough freedom to fit
- Solution: Complexify it as $\mathbf{10}_{H} \equiv \mathbf{10}_{H,1} + i\mathbf{10}_{H,2}$
- But then have extra Yukawa couplings

 Y_{10} **16**_{*F*}**10**_{*H*}**16**_{*F*} + \tilde{Y}_{10} **16**_{*F*}**10**^{*}_{*H*}**16**_{*F*}

Accommodating the SM parameters

Bajc et al. hep-ph/0510139 Altarelli, Meloni 1305.1001 Babu, Khan 1507.06712

Babu et al. 1612.04329

- $\mathbf{10}_H$ is a real representation $\implies v_{10}^u = v_{10}^d$. Not enough freedom to fit
- Solution: Complexify it as $\mathbf{10}_{H} \equiv \mathbf{10}_{H,1} + \mathrm{i}\mathbf{10}_{H,2}$
- But then have extra Yukawa couplings

 Y_{10} **16**_F**10**_H**16**_F + \tilde{Y}_{10} **16**_F**10**^{*}_H**16**_F

• Introduce $U(1)_{PQ}$ symmetry with charges

$$\mathbf{16}_F \to \mathrm{e}^{\mathrm{i}\alpha}\mathbf{16}_F, \ \mathbf{10}_H \to \mathrm{e}^{-2\mathrm{i}\alpha}\mathbf{10}_H, \ \overline{\mathbf{126}}_H \to \mathrm{e}^{-2\mathrm{i}\alpha}\overline{\mathbf{126}}_H$$

• Axions: Strong CP problem and DM. $f_a = M_{\rm GUT} = 4.51 \times 10^{15} \, {\rm GeV}$

Fitting to the Standard Model

$$\begin{split} v_{\text{SM}} \, Y_{u} &= v_{10}^{u} \, Y_{10} + v_{126}^{u} \, Y_{126} \, , \\ v_{\text{SM}} \, Y_{d} &= v_{10}^{d} \, Y_{10} + v_{126}^{d} \, Y_{126} \, , \\ v_{\text{SM}} \, Y_{\nu} &= v_{10}^{u} \, Y_{10} - 3 v_{126}^{u} \, Y_{126} \, , \\ v_{\text{SM}} \, Y_{\ell} &= v_{10}^{d} \, Y_{10} - 3 v_{126}^{d} \, Y_{126} \, , \\ M_{R} &= v^{\sigma} \, Y_{126} \, . \end{split}$$

- 19 free parameters and 19 data
- Integrate out RH neutrinos: $\kappa \rightarrow \kappa + \frac{2}{M_{Ni}} (Y_{\nu}^{i})^{T} (Y_{\nu}^{i})$ at each RH neutrino threshold
- Find acceptable fit ($\chi^2 \simeq 21$)
- Simple leptogenesis not successfully fit

Babu, Mohapatra hep-ph/9209215, Fukuyama, Okada hep-ph/0205066 Bertolini et al. hep-ph/0605006, Joshipura, Patel 1102.5148

 Dueck, Rodejohann 1306.4468, Antusch et al. hep-ph/0203233, arXiv:hep-ph/0501272
 20 May 2019
 9 / 13

 M. Pernow (KTH)
 Minimal SO(10)-based GUT
 20 May 2019
 9 / 13

Vacuum Stability

$$16\pi^{2}\frac{d\lambda}{d\ln\mu} = \dots - 3\lambda\left(3g_{2}^{2} + \frac{3}{5}g_{1}^{2}\right) + 3g_{2}^{4} + \frac{3}{2}\left(\frac{3}{5}g_{1}^{2} + g_{2}^{2}\right)^{2} + 4\lambda \operatorname{Tr}\left[Y_{\nu}^{\dagger}Y_{\nu}\right] - 8\operatorname{Tr}\left[Y_{\nu}^{\dagger}Y_{\nu}Y_{\nu}^{\dagger}Y_{\nu}\right] + \dots \text{ Machacek, Vaughn 1985}$$

M. Pernow (KTH)

Minimal SO(10)-based GUT

20 May 2019 10 / 13

Towards More General Fits

Dueck, Rodejohann 1306.4468

Let us relax some model specifications:

- Do not specify the extra scalars
- Do not know exact M_{GUT}
- Both Type-I and Type-II seesaw

Dueck, Rodejohann 1306.4468

Let us relax some model specifications:

- Do not specify the extra scalars
- Do not know exact M_{GUT}
- Both Type-I and Type-II seesaw
- Remove the colored octet scalars
- Set $M_{
 m GUT} = 2 imes 10^{16} \, {
 m GeV}$, but check sensitivity to $M_{
 m GUT}$
- Introduce another scale: Mass of $\Delta_L \equiv ({f 1},{f 3})_{-1}$

Neglects some model details, but indicative

Fit Results

- Acceptable fits to normal neutrino mass ordering ($\chi^2\simeq$ 14.7), but not inverted
- Type-II seesaw is sub-dominant: $M_\Delta \sim M_{GUT}$, $v_\Delta \sim 10^{-6}\,{
 m GeV}$
- Largest contribution to χ^2 is $\sin^2 \theta_{23}^{\ell}$: fit favours value in first octant (0.474), but actual value is in second octant (0.547)

Conclusion

Minimal SO(10) model with $U(1)_{PQ}$ symmetry

- Neutrino masses
- Dark matter
- Baryon asymmetry of the universe (More detailed analysis needed)
- Higgs vacuum stability
- Fit the Yukawa sector to SM \checkmark

BACKUP SLIDES

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

$$\begin{split} & \mathcal{M}_1 \lesssim 5.92 \times 10^{10} \text{ GeV} \,, \\ & \mathcal{M}_2 \approx \left(\frac{\mathcal{M}_1}{\text{GeV}}\right)^{0.330} \times 1.65 \times 10^7 \, \text{GeV} \,, \\ & \mathcal{M}_{\text{GUT}} \approx \left(\frac{\mathcal{M}_1}{\text{GeV}}\right)^{-0.0447} \times 7.34 \times 10^{15} \, \text{GeV} \,. \end{split}$$

$$au_{p} \equiv au(p
ightarrow e^{+}\pi^{0}) \simeq rac{4}{\pi} rac{f_{\pi}^{2}}{m_{p}} rac{1}{lpha_{H}^{2} A_{R}^{2}} rac{1}{F_{q}} rac{M_{ extsf{GUT}}^{4}}{lpha(M_{ extsf{GUT}})^{2}} \,,$$

where $f_{\pi} \approx 139 \,\text{MeV}$ is the pion decay constant, $m_p \approx 938.3 \,\text{MeV}$ is the proton mass, $\alpha_H \approx 0.012 \,\text{GeV}^3$ is the hadronic matrix element, $A_R \approx 2.726$ is a renormalisation factor, and $F_q \approx 7.6$ is a quark-mixing factor.

$$au_{
m p} pprox 3.22 imes rac{M_{
m GUT}^4}{lpha (M_{
m GUT})^2} \, .$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

$$\begin{split} H &\equiv \frac{v_{10}^d}{v_{\text{SM}}} Y_{10}, \quad F \equiv \frac{v_{126}^d}{v_{\text{SM}}} Y_{126}, \quad r \equiv \frac{v_{10}^u}{v_{10}^d}, \\ s &\equiv \frac{1}{r} \frac{v_{126}^u}{v_{126}^d} = \frac{v_{10}^d}{v_{10}^u} \frac{v_{126}^u}{v_{126}^d}, \quad r_R \equiv v_{126}^R \frac{v_{\text{SM}}}{v_{126}^d}, \quad r_L \equiv \frac{v_{\text{SM}}}{v_{126}^d}. \end{split}$$

$$Y_u = r(H + sF), \quad Y_d = H + F,$$

$$Y_\nu = r(H - 3sF), \quad Y_\ell = H - 3F,$$

$$M_R = r_R F, \quad Y_\Delta = r_L F.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Observable	Value	Error
m_u (MeV)	1.36	0.15
$m_c ({ m MeV})$	635	32
$m_t ({ m GeV})$	172	8.7
$m_d ({ m MeV})$	2.90	0.15
$m_s ({ m MeV})$	54.1	2.8
$m_b ({ m GeV})$	2.87	0.15
$m_e ({ m MeV})$	0.487	0.025
$m_{\mu} ({ m MeV})$	103	5.2
$m_{ au} \ ({ m GeV})$	1.75	0.088
$\Delta m_{21}^2 (10^{-5} {\rm eV}^2)$	7.55	0.38
$\Delta m_{31}^2 (10^{-3} {\rm eV}^2)$ (NO)	2.50	0.13
$\Delta m_{32}^2 (10^{-3} {\rm eV}^2)$ (IO)	-2.42	0.13
$\sin \theta_{12}^q$	0.225	0.012
$\sin \theta_{13}^q$	0.00372	0.00019
$\sin \theta_{23}^q$	0.0418	0.0021
$\delta_{\rm CKM}$	1.14	0.058
$\sin^2 \theta_{12}^{\ell}$	0.320	0.020
$\sin^2 heta_{13}^\ell$ (NO)	0.0216	0.0011
$\sin^2 heta_{13}^\ell$ (IO)	0.0222	0.0012
$\sin^2 \theta_{23}^{\ell}$ (NO)	0.547	0.030
$\sin^2 \theta_{23}^{\ell}$ (IO)	0.551	0.030
λ	0.516	0.026

Parameter	Value
m_1	$3.70\times 10^{-3}{\rm eV}$
m_2	$9.55\times 10^{-3}{\rm eV}$
<i>m</i> ₃	$4.93\times 10^{-2}{\rm eV}$
M_1	$1.87\times 10^{10}{\rm GeV}$
<i>M</i> ₂	$4.46\times 10^{11}{\rm GeV}$
<i>M</i> ₃	$2.34\times 10^{12}{\rm GeV}$
m _{ee}	$1.56\times 10^{-3}\rm eV$
$\delta_{ m CP}$	0.441

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで