Radion Activated Higgs Mechanism

Ongoing work with Jay Hubisz and Gabriele Rigo

Cem Eröncel

May 20, 2019 / SUSY 2019

Department of Physics, Syracuse University

Fine Tuning Problem of the Higgs Mass

The Higgs mass is obtained from a potential defined at some high mass scale like $M_{\rm pl}$ or $M_{\rm GUT}$, with a bare mass term.

$$V(|H|) = M_H^2 |H|^2 + \lambda_H |H|^4$$
 , $m_h^2 \sim -M_H^2 + \Lambda^2$

Standard Model seems to be very very close to the critical point unprotected by a symmetry.

Scalar Singlets and the Higgs

A scalar field Φ , which is a singlet under the SM, will couple to the Higgs doublet, since it is allowed by the symmetry.

$$\mathcal{L} \supset \lambda \Phi |H|^2$$

Such a coupling creates an effective dynamical mass term for the Higgs, which is a function of the singlet field.

$$M_H^2 \to M_H^2(\Phi) = M_H^2 - \lambda \Phi$$

The potential responsible for electroweak symmetry breaking now depends on multiple fields.

$$V(|H|) \to V(|H|, \Phi) = (M_H^2 - \lambda \Phi) |H|^2 + \lambda_H |H|^4 + V(\Phi)$$

2

A Naturally Light Higgs from Scalar Singlets

The minimum of the multi-scalar potential might lie on a region close to the Higgs critical surface and provide an attempt to explain the Higgs criticality in the Standard Model.

Such a property can lead to non-perturbative, violent cosmological dynamics which can have novel experimental signatures. Amin, Fan,

Lozanov, Reece 1802.00444

What are we aiming for?

- Engineer models where the minimum of a modulus field coincides with a light Higgs.
- 2. What are the ingredients for such models?
- 3. What kind of fine tuning (if any) is needed to realize such models?

Warped Extra Dimensions and the Radion

A classical gravity theory on AdS_5 space bounded by UV and IR 3-branes. L. Randall and R. Sundrum hep-ph/9905221

The mass scales on the IR brane are suppressed with respect to the mass scales on the UV brane.

$$rac{\Lambda_{
m IR}}{\Lambda_{
m LIV}} \sim rac{e^{-ky_1}}{e^{-ky_0}} \ll 1 \quad {
m for} \quad y_1 - y_0 \sim \mathcal{O}(20)$$

Strongly Coupled Theories and the Dilaton

The AdS/CFT correspondance provides a relation between warped extra dimensions and strongly coupled field theories which are conformal over a large energy scale.

```
AdS<sub>5</sub> with UV brane at e^{ky_0} = \Lambda_{\text{UV}} \Leftrightarrow \mathcal{L}_{\text{4D-CFT}} with cutoff at \Lambda_{\text{UV}} IR brane at e^{ky_1} = \Lambda_{\text{IR}} \Leftrightarrow \text{Confinement} at \Lambda_{\text{IR}} \ll \Lambda_{\text{UV}} Movement in +y direction \Leftrightarrow \text{RG running} to lower energies Radion \Leftrightarrow \text{Dilaton} as (p)NGB of CFT
```

Effective Potential and Moduli Stabilization

Integrate out the extra dimension to get a 4D effective potential.

$$V_{\mathrm{eff}}(\mathbf{f}) = \underbrace{\left(T_0 - \frac{6k}{\kappa^2}\right)}_{\equiv 0 \ \Rightarrow \ \mathrm{CC \ tuning}} + \underbrace{e^{-4k(y_1 - y_0)}}_{\left(\frac{f}{k}\right)^4} \left(T_1 + \frac{6k}{\kappa^2}\right) \Rightarrow \mathrm{No \ min \ wrt } \mathbf{f}$$

To stabilize the modulus, i.e. get a min for f we need to add scalar fields to the bulk. W. D. Goldberger and M. B. Wise hep-ph/9907447

$$\mathrm{d} s^2 = e^{-2k|y|} \eta_{\mu\nu} \, \mathrm{d} x^{\mu} \, \mathrm{d} x^{\nu} - G(y)^{-1} \, \mathrm{d} y^2$$
 , $G(y) \Rightarrow \mathsf{AdS}_5$

A minimum at small f can be generated for $\epsilon \sim \mathcal{O}(0.1)$ bulk scalar mass \Rightarrow mild explicit breaking of CFT by $[\mathcal{O}_\epsilon] = 4 - \epsilon$ operator.

$$V_{\rm eff}(f) \sim \lambda_{\epsilon} k^{\epsilon} f^{4-\epsilon} + \lambda_4 f^4 \Rightarrow {\rm radion/dilaton}$$
 as pNGB of CFT

7

Suppressing the Electroweak Scale

Observations imply $f \gtrsim \mathcal{O}(\text{TeV})$. Still need to suppress the electroweak scale.

$$\frac{v_{\mathsf{EW}}}{f} \lesssim \mathcal{O}(0.1) \Rightarrow \mathsf{Little} \; \mathsf{Hierarchy} \; \mathsf{Problem}$$

Radion/dilaton Φ is a scalar singlet, so it couples to Higgs.

$$\mathcal{L} \supset \lambda_{\Phi} \Phi |H|^2$$
.

Can the combined Higgs/Radion potential solve the little hierarchy problem?

The General Model

The general action we consider is

$$S = \int d^5 x \sqrt{g} \left[\frac{1}{2} \sum_{i} (\partial \phi_i)^2 + \frac{6k}{\kappa^2} - V_B(\{\phi\}) - \frac{\mathcal{R}}{2\kappa^2} \right]$$
$$- \int d^4 x \sqrt{-g_0} V_0(\{\phi\}) \Big|_{y=y_0} - \int d^4 x \sqrt{-g_1} V_1(\{\phi\}) \Big|_{y=y_1}$$

After integrating out the extra dimension, the effective potential will depend on both the radion VEV and the Higgs VEV.

$$V_{\text{eff}}(\mathbf{f}, |\mathbf{H}|) = \left[V_0(\mathbf{f}, |\mathbf{H}|) - \frac{6k}{\kappa^2} \sqrt{G(\mathbf{f}, |\mathbf{H}|)} \right] \Big|_{y=y_0}$$
$$+ \left(\frac{\mathbf{f}}{\overline{k}} \right)^4 \left[V_1(\mathbf{f}, |\mathbf{H}|) + \frac{6k}{\kappa^2} \sqrt{G(\mathbf{f}, |\mathbf{H}|)} \right] \Big|_{y=y_1}$$

9

Radion Activated Symmetry Breaking

We are interested in models where the electroweak criticality is a function of the brane separation, i.e. where the radion activates EW symmetry breaking.

Tuning the Brane Tension to get a Light Higgs

In the absence of Higgs VEV, T_1 sets y_{min} at which the effective potential is minimized.

There exists a critical T_1^{crit} which make y_{\min} coincide with the Higgs criticality. $T_1 = T_1^{\text{crit}} \Rightarrow y_{\min} = y_c$

How much T_1 -tuning we need to get $v_{\text{EW}}/f \lesssim \mathcal{O}(0.1)$?

Example Models

To calculate tuning quantitatively, we need specific models.

• Model #1: Higgs on the IR brane: A GW field ϕ in the bulk, coupled to the Higgs on the IR brane.

$$V_B = \frac{1}{2}\epsilon(4 - \epsilon)\phi^2 \quad \Leftrightarrow \quad [\mathcal{O}_{\epsilon}] = 4 - \epsilon$$

$$V_1 = T_1 + \gamma_1 (\phi - v_1)^2 + \lambda_H |H|^2 (|H|^2 - v_H^2 - \lambda \phi) |H|^2$$

 Model #2: Higgs in the bulk: Both the GW field φ and the Higgs live in the bulk and coupled to each other only through gravity.

$$V_B = \frac{1}{2}\epsilon(4 - \epsilon)\phi^2 + (-4 + \nu^2)|H|^2 \Leftrightarrow [\mathcal{O}_H^{\dagger}\mathcal{O}_H] = 4 - \nu^2$$

$$V_1 = T_1 + \gamma_1(\phi - v_1)^2 + \lambda_H|H|^2(|H|^2 - v_H^2)|H|^2$$

Example Model #1: Higgs on the brane

 $\mathcal{O}(0.1)$ suppression of electroweak scale v_{EW} wrt KK scale f can be obtained at the price of $\mathcal{O}(0.01)$ tuning T_1 .

Example Model #2: Higgs in the bulk

Naively it looks like $\mathcal{O}(0.01)$ suppression can be obtained with a mild tuning, y_c is very sensitive to the IR brane mass for the Higgs.

$$\frac{\lambda_H v_H^2(y_c = 20) - \lambda_H v_H^2(y_c = 30)}{\lambda_H v_H^2(y_c = 20)} \approx 0.002$$

Mass Spectrum for the Higgs on the Brane

It is possible to make the Higgs lighter than the radion. Getting the mass spectrum for the Higgs in the bulk is a work in progress.

Conclusion and Outlook

We have explored the interplay between the radius stabilization and the Higgs mechanism in RS models.

At the price of (fine/mild) tuning, such an interplay can suppress the EW scale $v_{\rm EW}$ wrt KK (or CFT breaking) scale f.

The main ingredient for such models is that the EW symmetry breaking occurs at particular points of the moduli space.

A partial to-do list:

- More realistic models: (Composite $\Leftrightarrow A_5$) Higgs.
- Models where the suppression occurs over a large range of parameter space, i.e. less tuning.
- Cosmology: Brane dynamics, rolling radion, ...