

Search for new resonances in hadronic final states with the ATLAS and CMS detectors

Francesco Cirotto - INFN sezione di Napoli

on behalf of the ATLAS and CMS Collaborations

SUSY 2019

Probing new resonances

Beyond Standard Model (BSM) physics predicts new resonances decay to a pair of objects

→New heavy gauge bosons

- → New resonances
- Simplified models of WIMP dark matter
- →Extra-dimensions
- →Excited fermions

\(\)...

The (partial) Searches

←Full hadronic final states (In this talk) with ATLAS and CMS

Status of the analyses

36 fb⁻¹ boosted dibjet boosted dijet + ISR (jet, photon) top - anti top VLQ

80 fb⁻¹ dijet

36 fb⁻¹ boosted dijet + ISR (jet, photon) top - anti top VLQ

80 fb⁻¹ dijet + ISR (photon, lepton) dibjet + ISR **140 fb⁻¹** dijet

Dijet searches

- 1 Definition of a set of signal region(s) (SR)
 - Find the best cuts to optimize signal over background
- 2 Model background with parametric function or use side band method
- 3 Unblinding → Is there an excess?
 - → Look for a narrow peak
- 4 If no excess is found the results are interpreted in terms of limits on models under study

Dijet searches

- *Full Run 2 datasets: 2015-2018, corresponding to 139 fb⁻¹
- Collecting data with single jet trigger (p_T threshold: 420 GeV)
- *Probe high mass region
- *Variable binning to reflect varying resolution
- *Background estimate with sliding windows method
- ♣Data fitted with a 5 parameter function
 - → No significant excesses found

$$f(x) = p_1 (1 - x)^{p_2} x^{p_3 + p_4 \ln x + p_5(\ln x)^2}$$

ATLAS-CONF-2019-007

- Improved sensitivity with respect 2015/2016 analysis
- ★Benchmark: q* model
- *Limits on Gaussian signal models

- *2016 and 2017 datasets: corresponding to 77.8 fb⁻¹
- ★Invariant mass of two "wide" jets
 - \hookrightarrow Add jets with $\Delta R < 1.1$
- *QCD background predicted both by fitting data and with new ratio method
 - \hookrightarrow Ratio method: estimate background using m_{jj} distribution in CR defined by a $|\Delta\eta|$ sideband between two leading jets
 - ◆ Valid from 2.5 TeV
 - ◆ If a signal is observed the method leads to smaller uncertainties on the background prediction and to increased sensitivity
 - \hookrightarrow QCD suppression in SR by applying $|\Delta\eta|$ <1.1 cut

$$\frac{\mathrm{d}\sigma}{\mathrm{d}m_{\mathrm{jj}}} = \frac{P_0(1-x)^{P_1}}{x^{P_2+P_3\ln(x)}}$$

CMS-PAS EXO-17-026

- *Separate limits for different final states: qq, gg, qg
 - → Dijet resonances shapes depending on the final state

CMS-PAS EXO-17-026

Dijet searches limitation

- *Dijet searches are limited at lower masses by a large multi-jet background
 - → Trigger saturation
 - → Minimum trigger thresholds ~2p_T, with p_T typically of several hundreds GeV → Poor sensitivity below 1 TeV

*Several strategies:

- → ATLAS "Trigger level analyses", CMS "data scouting" → NOT covered in this talk
- Triggering on Initial State Radiation: photon, lepton, jet

Dijet searches limitation

- *Dijet searches are limited at lower masses by a large multi-jet background
 - → Trigger saturation
 - → Minimum trigger thresholds ~2p_T, with p_T typically of several hundreds GeV → Poor sensitivity below 1 TeV

*Several strategies:

- → ATLAS "Trigger level analyses", CMS "data scouting" → NOT covered in this talk
- Triggering on Initial State Radiation: photon, lepton, jet

*Requesting an ISR:

- Reduces signal acceptance but allows efficient triggering at lower masses
- At even lower masses the decay products of the resonance will merge into a single large-radius jet

80 fb⁻¹

- *Single photon or photon + jet trigger (better at high mass)
 - Combined trigger not active during 2015 data → ~3.2 fb⁻¹ less than single photon trigger
- * QCD suppressed with y*<0.75 (cut on rapidity difference)
- *Sliding windows estimate
- *****4 region defined:
 - → Combined photon trigger (m_{jj} > 335 GeV)
 - → Single photon trigger (m_{jj} > 169 GeV)
 - →Flavor inclusive and 2 b-tag selection
- *No deviations observed

arXiv:1901.10917

*Limits on Z' axial-vector-dark-matter mediators as function of coupling

arXiv:1901.10917

- *Single lepton (electron or muon) trigger
 - →Extend m_{ij} sensitivity below 1 TeV
- *Background modeled with a five parameter function and by using sliding window fit
- *****Sliding windows estimate
- *Limits on new resonances described by Gaussian signals

ATLAS-CONF-2018-015

Searches with boosted objects

Resolving individual decay products become more difficult at high mass (boosted objects)

Reconstruct a single large-R jet and investigate its substructure

- *Recover signal efficiency for merged decays
- *Grooming: remove pile-up and soft radiation
 - → Improve mass resolution
- *****Use tracking information

	ATLAS	CMS	
anti-k _t R	1.0	8.0	
grooming algorithm	trimming	soft drop mass	

- ★Search range in 70 < m_{jj} < 230 GeV</p>
 - Complementarity to dijet + photon search (2 b-tag region)
- *****QCD estimation:
 - → Fit to data
 - → Validation in CR with 0 b-tagged jets

$$f_n\left(x\,\middle|\,\vec{\theta}\,\right) = \theta_0 \exp\left(\sum_{i=1}^n \theta_i x^i\right)$$

ATLAS-CONF-2018-052

Dibjets + ISR

- *Sensitivity between 50 and 300 GeV
- Two wide-jet algorithm considered
 - →anti-k_t R=0.8, better sensitivity at signal masses below 175 GeV
 - → Cambridge-Aachen R=1.5, better sensitivity at higher masses
- *Dedicated double b-tagger
 - Events failing the selection are used for the QCD estimation
- **★**11 p_T categories (six for anti-k_t, five for CA) X failing/passing btagger
- *Soft drop jet mass as discriminating variable

Dijet + ISR(photon/jets)

Very similar techniques in all analyses

★Search for an excess in m_{jj}

*****ATLAS: γ E_T > 155 GeV, p_T (anti-k_t = 0.4) > 420 GeV

*****CMS: γ E_T > 200 GeV, p_T (anti- k_t = 0.8) > 500 GeV

*Limits on DM mediators

CMS results below 50 GeV are the first to be published in this mass range

ATLAS-EXOT-2017-01 CMS-PAS-EXO-17-027

*Mass categorization:

- → Low mass: multijet final state ("resolved")
- → High mass: large-R jets ("boosted")

*****Pair reconstruction:

- Resolved analysis: buckets of tops algorithm, based on m_{top} and m_W
- Boosted: top-tagging based on jet mass and substructure

*Background estimation:

- QCD from enriched regions (data-driven)
- Resolved: different quality criteria on top and b jets
- →Boosted: invert b-tag and jet mass

ATLAS-EXOT-2016-24

*Fit Results:

→ Fit on m_{tt}

→ Resolved: 3CRs + 1 SR

→Boosted: 8 SRs

top color-assisted-technicolor model

vector and axial-vector mediators Z' in the dark-matter simplified model

 \hookrightarrow KK excitations of the graviton G_{KK} and gluon g_{KK} in RS extra-dimension scenario

ATLAS-EXOT-2016-24

*Fit Results:

→ Fit on m_{tt}

→ Resolved: 3CRs + 1 SR

→Boosted: 8 SRs

ATLAS-EXOT-2016-24

*Require large-R jet topology

- *Reconstruction techniques optimized for top quarks with high Lorentz boosts
 - →PUPPI algorithm: use pileup information to separate hadronically decaying top quarks from light quark or gluon jets
 - Soft Drop algorithm: criteria applied on sub-jets p_T and their relative distances
- *Six SRs based on two criteria
 - Rapidity difference between the two jets
 - → Number of jets with a b-tagged subject (0,1,2)
- *Background estimation
 - →QCD from data

CMS-B2G-17-017

*Full Hadronic channel provides the best sensitivity along with single lepton

CMS-B2G-17-017

VLQ searches

- *Fermions predicted in many theories addressing naturalness
- *Spin-1/2 fermions having ψ_L and ψ_R in the same SU(2) representation
- *Most searches assume that the VLQs couple/decay to SM particles (a boson and a 3rd generation quark)
- *Rich phenomenology at the LHC lots of top quarks, bottom quarks, leptons, and jets in the final state!

$$\begin{array}{ccc} T \rightarrow bW & & B \rightarrow tW \\ T \rightarrow tZ & & B \rightarrow bZ \\ T \rightarrow tH & & B \rightarrow bH. \end{array}$$

Vector-Like Quarks - Combination

*6 published analyses for vector-like T

*4 published analyses for vector-like B

Vector-Like Quarks - Combination

Cut based analysis

*NN analysis

CMS-PAS-B2G-18-005

- The ATLAS and CMS collaborations have investigated invariant mass spectra of jets for BSM resonances with Run 2 LHC data.
- *ATLAS and CMS have common signatures
 - → New ATLAS results: dijet search with full Run-2 dataset
 - → New CMS results: lowering sensitivity below 50 GeV
- *No evidence for new physics, 95% CL limits are set
- *Exploits full Run-2 statistics
 - → Most signatures only use 1/3 of the available dataset
 - Continuous improvements to substructure tools
 - → Upgrade detectors

Backup

Dijet searches

$$N(m_{jj})_{\mathrm{SR}}^{\mathrm{Prediction}} = R_{\mathrm{ext.}} \times N(m_{jj})_{\mathrm{CR}_{\mathrm{high}}}^{\mathrm{Data}}$$
 $R_{\mathrm{ext.}} = \mathrm{Corr}(m_{jj}) \times N(m_{jj})_{\mathrm{SR}}^{\mathrm{Simulation}} / N(m_{jj})_{\mathrm{CR}_{\mathrm{high}}}^{\mathrm{Simulation}}$
 $R_{\mathrm{ext.}}^{\mathrm{aux.}} = N(m_{jj})_{\mathrm{CR}_{\mathrm{middle}}} / N(m_{jj})_{\mathrm{CR}_{\mathrm{high}}}$
 $\mathrm{Corr}(m_{jj}) = \frac{R_{\mathrm{ext.}}^{\mathrm{aux.Data}}}{R_{\mathrm{ext.}}^{\mathrm{aux.Data}}} = P_0 + P_1 \times (m_{jj}/\sqrt{s})^4$

		Observed (expected) mass limit [TeV]		
Model	Final	$36\mathrm{fb}^{-1}$	$77.8{ m fb}^{-1}$	
	State	13 TeV	13 TeV	
String	qg	7.7 (7.7)	7.6 (7.9)	
Scalar diquark	qq	7.2 (7.4)	7.3 (7.5)	
Axigluon/coloron	$q\overline{q}$	6.1 (6.0)	6.2 (6.3)	
Excited quark	qg	6.0 (5.8)	6.0 (6.0)	
Color-octet scalar ($k_s^2 = 1/2$)	gg	3.4 (3.6)	3.7 (3.8)	
W'	$q\overline{q}$	3.3 (3.6)	3.6 (3.8)	
\mathbf{Z}'	$q\overline{q}$	2.7 (2.9)	2.9 (3.1)	
RS graviton ($k/M_{\rm PL}=0.1$)	$q\bar{q}, gg$	1.8 (2.3)	2.4 (2.4)	
DM mediator ($m_{\rm DM} = 1 {\rm GeV}$)	$q\overline{q}$	2.6 (2.5)	2.5 (2.8)	

CMS-PAS EXO-17-026

Criterion	Single-photon trigger	Combined trigger
Number of jets	$n_{\rm jets} \ge$	2
Number of photons	$n_{\gamma} \geq$	1
Leading photon	$E_{\rm T}^{\gamma} > 150 {\rm GeV}$	$E_{\rm T}^{\gamma} > 95 {\rm GeV}$
Leading, subleading jet	$E_{\rm T}^{\gamma} > 150 {\rm GeV}$ $p_{\rm T}^{\rm jet} > 25 {\rm GeV}$	$E_{\rm T}^{\gamma} > 95 \text{ GeV}$ $p_{\rm T}^{\rm jet} > 65 \text{ GeV}$
Centrality	$ y^* = y_1 - y_2 $	•
Invariant mass	$m_{\rm jj} > 169~{\rm GeV}$	$m_{\rm jj} > 335~{\rm GeV}$
Criterion (applied to each trigger selection)	Inclusive	b-tagged
Jet η	$ \eta^{\rm jet} < 2.8$	$ \eta^{\rm jet} < 2.5$
b-tagging	_	$n_{b\text{-tag}} \geq 2$

$$y = \frac{1}{2} \ln [(E + p_z)/(E - p_z)]$$

arXiv:1901.10917

		Impact on Signals $(\sqrt{\Delta\sigma^2}/\mu)$			
Source	Туре	V+jets	Higgs	Z' (100 GeV)	Z' (175 GeV)
Jet energy and mass scale	Norm. & Shape	15%	14%	23%	18%
Jet mass resolution	Norm. & Shape	20%	17%	30%	20%
V + jets modeling	Shape	9%	4%	4%	< 1%
$t\bar{t}$ modeling	Shape	< 1%	1%	< 1%	11%
b-tagging (b)	Normalisation	11%	12%	11%	15%
b-tagging (c)	Normalisation	3%	1%	3%	5%
b-tagging (l)	Normalisation	4%	1%	4%	7%
$t\bar{t}$ scale factor	Normalisation	2%	3%	2%	58%
Luminosity	Normalisation	2%	2%	2%	3%
Alternative QCD function	Norm. & Shape	4%	4%	3%	17%
W/Z and QCD (Theory)	Normalisation	14%	_	_	_
Higgs (Theory)	Normalisation	_	30%	_	_

ATLAS-CONF-2018-052

Dibjets + ISR

Uncertainty source	Process			
	W or Z (AK8)	W or Z (CA15)	Φ or A (AK8)	Φ or A (CA15)
Integrated luminosity	2.5%	2.5%	2.5%	2.5%
Trigger efficiency	2%	2%	2%	2%
Pileup	<1%	<1%	<1%	<1%
N ₂ ^{1,DDT} selection efficiency	4.3%	6%	4.3%	6%
Double-b tag	4% (Z)	8% (Z)	4%	8%
Jet energy scale / resolution	5–15%	5–15%	5–15%	5–15%
Jet mass resolution	8%	8%	8%	8%
Jet mass scale (% / $(p_T [GeV] / 100))$	0.4%	1%	0.4%	1%
Simulation sample size	2-25%	2–25%	4–20%	4–20%
NLO QCD corrections	10%	10%		
NLO EW corrections	15–35%	15–35%		
NLO EW W/Z decorrelation	5–15%	5–15%		

CMS-EXO-17-024

Dijet + ISR(photon/jets)

	$m_{Z'} = 10$	60 GeV	$m_{Z'}=22$	20 GeV
ISR jet (ISR γ) selection criterion	ISR jet ϵ [%]	ISR $\gamma \in [\%]$	ISR jet ϵ [%]	ISR $\gamma \in [\%]$
$p_{\rm T}^{J} > 450 \ (200) \ {\rm GeV}$	0.22	5.8	0.17	1.1
$ \rho^{\text{DDT}} > 1.5 $	0.11	2.4	0.07	0.4
$p_{\rm T}^{\rm ISR} > 420~(155)~{\rm GeV}$	0.09	2.4	0.06	0.4
$\tau_{21}^{\mathrm{DDT}} < 0.5$	0.07	1.3	0.04	0.3

Uncertainty source		$\Delta\mu/\mu~[\%]$	
	$m_{Z'} = 100 \text{ GeV}$	$m_{Z'} = 160 \text{ GeV}$	$m_{Z'} = 220 \text{ GeV}$
Transfer factor	86	90	88
Large- <i>R</i> jet calib. and modelling	19	25	17
W/Z normalisation	43	0	0
Signal PDF	0	0	1
Luminosity	2	0	0
Total systematic uncertainty	91	93	91
Statistical uncertainty	9	10	11

Uncertainty	Affected Distributions	Effect
Polynomial fit [†] *	Non-resonant	1 - 5%
Electron veto	$t\bar{t}$, W , Z , Z'	0.5%
Muon veto	$t\bar{t}$, W , Z , Z'	0.5%
Jet mass smear [†] *	$t\bar{t}$, W , Z , Z'	0.7%
Jet energy corrections	$t\bar{t}$, W , Z , Z'	2%
Luminosity	$t\bar{t}$, W , Z , Z'	2.5%
Trigger*	$t\bar{t}$, W , Z , Z'	3%
N_2^{DDT} efficiency	$t\bar{t}$, W , Z , Z'	5%
Photon ID	$t\bar{t}$, W , Z , Z'	6%
Jet Mass Scale [†] ∗	$t\bar{t}$, W , Z , Z'	6%
$W + \gamma$ normalization [†]	W	11%
$Z + \gamma$ normalization [†]	Z	45%
tt normalization [†]	$t \overline{t}$	54%

ATLAS-EXOT-2017-01 CMS-PAS-EXO-17-027

ATLAS-EXOT-2016-24

6

 $M_{Z'}$ [TeV]

4 5 M_{g_{kk}} [TeV]

CMS-B2G-17-017

Vector-Like Quarks - All hadronic

ATLAS-EXOT-2017-14