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Motivation

The search for MSSMs in String Theory has a long history
I Type IIA/B with D-branes
I F-Theory
I Heterotic orbifolds

MSSM searches in heterotic orbifolds
I need to fix ∼ 100 parameters
I usually done by random searches

Very inefficient!



Motivation

The search for MSSMs in String Theory has a long history
I Type IIA/B with D-branes
I F-Theory
I Heterotic orbifolds

MSSM searches in heterotic orbifolds
I need to fix ∼ 100 parameters
I usually done by random searches

Very inefficient!



Outline

Goals of this talk
I Have a careful look at the parameter space of heterotic

orbifold models
I Understand the connection between choices of parameters and

“good” models
I Use this information to refine the usual random searches for

MSSMs

in order to achieve this: Machine learning

Data generation
Data preparation

Neural Network
(find fertile patches)
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Parameter Space of (Heterotic) Orbifolds

× × ×R
1,3

Orbifolds are characterized by the space group

g = (θ | nα eα)

For the heterotic string: Embed into E8 × E8
(e.g. using the orbifolder [1110.5229])

vθ → Vθ Shift
eα → Wα Wilson lines

}
∈ Q16

subject to modular invariance conditions

→ spectrum, local gauge groups (local GUTs) fully determined



Compactification Parameters in Z6-II

× ×

I Geometric twist fixed as vθ =
(1

6 ,
1
3 ,−1

2

)
I Gauge embeddings:

I 1 shift of up to order 6
I 1 order 3 Wilson line, 2 order 2 Wilson lines

I Local shifts: Vg = kVθ + (n3 + n4)W3 + n5W5 + n6W6

Main motivation here

Mini-Landscape: [hep-th/0611095]
“Sweet spots” in the landscape,
based on physics considerations
(local GUTs w/full representations)

Machine Learning

reproduce and extend the
idea of the Mini-Landscape
in an automated fashion
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Redundant Data: Weyl Reflections and Lattice Vectors

Naive idea: use shift + 3 Wilson lines (= 64 parameters) as input

but ...

There are various transformations that leave the physical projection
conditions invariant

Weyl reflections V 7→ V − 2 αI ·V
αI ·αI

αI

addition of lattice vectors V 7→ V + λ

Problem: equivalent inputs can look completely different
numerically

Solution: use breaking patterns ( = number of invariant roots)
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Breaking patterns

For each gauge embedding V count the number of roots p that
fulfill

V · p = 0 mod 1

Individually for each E8, so each gauge embedding becomes a tuple
of 2 integers

Idea: Look at local gauge groups (local GUTs) in the θ twisted
sector:
12 different local gauge groups

Vg = Vθ + (n3 + n4)W3 + n5W5 + n6W6

I Amend local breaking patterns by global gauge group →
2× 12 + 2 = 26 parameters

I For later purposes: one-hot encoding → 26 × 37 = 962 input
dimensions
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The Dataset(s)

I Training: 700k from random search, by chance including
some MSSMs
→ we will use this dataset in order to identify fertile patches

I Evaluation: 6.3M from random search
→ are our fertile patches chosen correctly?

I 30k from the Mini-Landscape
→ compare our approach to physics-motivated considerations
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Because of the information bottleneck, the network is forced to
learn a compressed representation of the input by exploiting

(nonlinear) redundancies
Draw a map: after training, use the first half of the network

(=the encoder) to draw a 2-d map of the landscape
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Results

Training set: MSSMs in red, random models in blue, fertile islands in green
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Results

Mini-Landscape: MSSMs in red, random models in blue, fertile islands in green



Decision Tree

Question: How can I tell the different clusters apart?

Decision tree: Classify clusters according to specifications like

If an entry x in the feature vector has value
below Tx and an entry y in the feature vector
has value below Ty and . . . ,
then this data point belongs to cluster Ri .

Main advantages:
I Almost trivial to feed information gathered in this way to a

computer
I A first step to an interpretation in terms of physical quantities
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Beyond Random Searches

Two direct applications

Shortcuts during random search

The orbifolder works as follows

(i) Generate random, modular
invariant gauge embedding

(ii) Compute spectrum
(iii) Check whether spectrum

contains an MSSM
Using the decision tree, we can
skip steps (ii) and (iii)

Generation of fertile models

Possible algorithm
(i) Generate random shift
(ii) Check whether it has the

chance to be in a fertile
patch:

I if no, scrap the model
I if yes, create random

Wilson line

(iii) Repeat until one has a
complete model
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Conclusions

A role model for other orbifold geometries:
I Data preprocessing

I Generate a coarse sample
I Remove any redundancy in the data due to symmetries

I Draw a map of the landscape using an autoencoder
I Identify fertile patches: every cluster containing an MSSM is a

candidate
I Use a decision tree in order to extract information on the

fertile patches
I Find more MSSMs ...

Here, we have applied this method to the well-studied Z6-II orbifold
and evaluated the results using both a very large dataset and

models from the physically motivated Mini-Landscape
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