DUNE as the Next-Generation Solar Neutrino Experiment

Shirley Li
SLAC

SUSY, May 2019
Tension in current data

Solar ν vs. reactor ν

Data from SK 2016

Tension driven by day-night effect

Reactor: vacuum oscillation

Solar: matter effect

Figure credit: F. Capozzi

Shirley Li (SLAC)
New physics?

Friedland, Lunardini & Pena-Garay, 2004

Shirley Li (SLAC)
Tension in current data

Data from SK 2016

Solar ν vs. reactor ν

Reactor: vacuum oscillation

Solar: matter effect

Tension driven by day-night effect

Shirley Li (SLAC)
What we want to measure

\[\sin^2 \theta_{12} \quad \Delta m_{21}^2 \]

\[P_{ee} \]

\[\phi_e / \phi_{\text{total}} \text{ as a function of } E_\nu \]

Capozzi et al, 2018

sno.phy.queensu.ca
DUNE - MeV

4 10-kton liquid argon TPC module

- Trigger
- $T_e > 5$ MeV
- Energy resolution 7%
- Angular resolution 25°
Unique advantage of DUNE

CC channel: \(\nu_e + \text{Ar} \rightarrow e + K^* \) --- \(\phi_e \)

ES channel: \(\nu_x + e \rightarrow \nu_x + e \) --- \(\phi_e + \frac{1}{6}(\phi_\mu + \phi_\tau) \)
Unique advantage of DUNE

CC channel: $\nu_e + \text{Ar} \rightarrow e + K^*$ --- ϕ_e

ES channel: $\nu_x + e \rightarrow \nu_x + e$ --- $\phi_e + 1/6(\phi_\mu + \phi_\tau)$

Improve on $\sin^2 \theta$

Capozzi et al, 2018

Shirley Li (SLAC)
Unique advantage of DUNE

CC channel: $\nu_e + \text{Ar} \rightarrow e + K^*$

Good energy reconstruction:

$$E_e = E_\nu - Q - \Delta E$$

Difficult channel:

$$\nu_x + e \rightarrow \nu_x + e$$

Improve on δm^2

Capozzi et al, 2018
Event rate in DUNE

100 kton-year exposure

Shirley Li (SLAC)

Capozzi et al, 2018
Results

In addition, 8B flux 2.5%, hep flux 10%

Shirley Li (SLAC)

Capozzi et al, 2018
Backgrounds

Requires ~ 40 cm of water / plastic shielding or double the exposure

Capozzi et al, 2018

Shirley Li (SLAC)
Conclusions

Shirley Li (SLAC)
Back up
Measured metallicities

<table>
<thead>
<tr>
<th>Element</th>
<th>GS98</th>
<th>AGSS09met</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>8.52 ± 0.06</td>
<td>8.43 ± 0.05</td>
</tr>
<tr>
<td>N</td>
<td>7.92 ± 0.06</td>
<td>7.83 ± 0.05</td>
</tr>
<tr>
<td>O</td>
<td>8.83 ± 0.06</td>
<td>8.69 ± 0.05</td>
</tr>
<tr>
<td>Ne</td>
<td>8.08 ± 0.06</td>
<td>7.93 ± 0.10</td>
</tr>
<tr>
<td>Mg</td>
<td>7.58 ± 0.01</td>
<td>7.53 ± 0.01</td>
</tr>
<tr>
<td>Si</td>
<td>7.56 ± 0.01</td>
<td>7.51 ± 0.01</td>
</tr>
<tr>
<td>S</td>
<td>7.20 ± 0.06</td>
<td>7.15 ± 0.02</td>
</tr>
<tr>
<td>Ar</td>
<td>6.40 ± 0.06</td>
<td>6.40 ± 0.13</td>
</tr>
<tr>
<td>Fe</td>
<td>7.50 ± 0.01</td>
<td>7.45 ± 0.01</td>
</tr>
<tr>
<td>(Z/X)☉</td>
<td>0.02292</td>
<td>0.01780</td>
</tr>
</tbody>
</table>

Shirley Li (SLAC)
Cross section

<table>
<thead>
<tr>
<th>i</th>
<th>ΔE_i [MeV]</th>
<th>B_i(F)</th>
<th>B_i(GT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.333</td>
<td>1.64</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2.775</td>
<td>1.49</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3.204</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3.503</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3.870</td>
<td>0.44</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4.384</td>
<td>4.00</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>4.421</td>
<td></td>
<td>0.86</td>
</tr>
<tr>
<td>8</td>
<td>4.763</td>
<td></td>
<td>0.48</td>
</tr>
<tr>
<td>9</td>
<td>5.162</td>
<td></td>
<td>0.59</td>
</tr>
<tr>
<td>10</td>
<td>5.681</td>
<td></td>
<td>0.21</td>
</tr>
<tr>
<td>11</td>
<td>6.118</td>
<td></td>
<td>0.48</td>
</tr>
<tr>
<td>12</td>
<td>6.790</td>
<td></td>
<td>0.71</td>
</tr>
<tr>
<td>13</td>
<td>7.468</td>
<td></td>
<td>0.06</td>
</tr>
<tr>
<td>14</td>
<td>7.795</td>
<td></td>
<td>0.14</td>
</tr>
<tr>
<td>15</td>
<td>7.952</td>
<td></td>
<td>0.97</td>
</tr>
<tr>
<td>total</td>
<td></td>
<td>4.00</td>
<td>8.29</td>
</tr>
</tbody>
</table>
Cross section

cc \left[10^{-43} \text{ cm}^2 \right]
Mass square sensitivity

$A_{D/N} \%$

$m_3^2 [10^{-5} \text{eV}^2]$

solar best fit

reactor best fit

Shirley Li (SLAC)
Threshold

Depends on reconstruction & background level

Capozzi et al, 2018
Shirley Li (SLAC)

Sensitivity loss due to statistics
It can be compensated by larger exposure.

Up to ~ 8 MeV

Threshold

Capozzi et al, 2018

Shirley Li (SLAC)
Cross section

Current uncertainty: a few %

Capozzi et al, 2018

Shirley Li (SLAC)
Reconstruct neutrino energy

Event Spectrum [MeV$^{-1}$]

Event Energy [MeV]

B CC

Backgrounds

30 degree CC

Backgrounds

Electron + Gamma Ray

Single Electron

Inside Forward Cone

Capozzi et al, 2018

Shirley Li (SLAC)
Worse energy resolution

Capozzi et al, 2018

Shirley Li (SLAC)
Backgrounds

Capozzi et al, 2018

![Graph showing electron kinetic energy distribution with different labels for background sources such as pre-cut spallation, neutron with and without shielding, 39Ar, 42Ar, 42K, and 214Bi from 100 Bq/m^3 222Rn with a 20% resolution.](#)