SLAC

DUNE as the Next-Generation Solar Neutrino Experiment

Shirley Li SLAC

SUSY, May 2019

Tension in current data

Solar neutrino oscillation

Capozzi et al, 2018

New physics?

Friedland, Lunardini & Pena-Garay, 2004

Tension in current data

Tension driven by day-night effect

What we want to measure

 $\phi_e / \phi_{\text{total}}$ as a function of E_v

DUNE - MeV

4 10-kton liquid argon TPC module

sciencemag.org

- Trigger
- $\succ T_e > 5 \text{ MeV}$
- Energy resolution 7%

Angular resolution 25°

Unique advantage of DUNE

CC channel: $\nu_e + Ar \rightarrow e + K^* --- \phi_e$

ES channel: $v_x + e \rightarrow v_x + e \rightarrow -- \phi_e + 1/6(\phi_\mu + \phi_\tau)$

Unique advantage of DUNE

CC channel: $\nu_e + Ar \rightarrow e + K^* - \phi_e$

ES channel: $v_x + e \rightarrow v_x + e \rightarrow --\phi_e + 1/6(\phi_\mu + \phi_\tau)$

Improve on $\underline{\sin^2 \theta}$

Capozzi et al, 2018

Unique advantage of DUNE

Capozzi et al, 2018

Event rate in DUNE

Results

Capozzi et al, 2018

In addition, ⁸B flux 2.5%, hep flux 10% Shirley Li (SLAC)

11/13

Backgrounds

Requires ~ 40 cm of water / plastic shielding or double the exposure

Conclusions

Measured metallicities

Element	GS98	AGSS09met
\mathbf{C}	8.52 ± 0.06	8.43 ± 0.05
Ν	7.92 ± 0.06	7.83 ± 0.05
Ο	8.83 ± 0.06	8.69 ± 0.05
Ne	8.08 ± 0.06	7.93 ± 0.10
Mg	7.58 ± 0.01	7.53 ± 0.01
\mathbf{Si}	7.56 ± 0.01	7.51 ± 0.01
\mathbf{S}	7.20 ± 0.06	7.15 ± 0.02
Ar	6.40 ± 0.06	6.40 ± 0.13
Fe	7.50 ± 0.01	7.45 ± 0.01
$(Z/X)_{\odot}$	0.02292	0.01780

i	$\Delta E_i \; [{ m MeV}]$	$B_i(F)$	$B_i(GT)$
1	2.333		1.64
2	2.775		1.49
3	3.204		0.06
4	3.503		0.16
5	3.870		0.44
6	4.384	4.00	
7	4.421		0.86
8	4.763		0.48
9	5.162		0.59
10	5.681		0.21
11	6.118		0.48
12	6.790		0.71
13	7.468		0.06
14	7.795		0.14
15	7.952		0.97
total		4.00	8.29

Mass square sensitivity

Threshold

Depends on reconstruction & background level

Threshold

It can be compensated by larger exposure

Capozzi et al, 2018

Current uncertainty: a few %

Reconstruct neutrino energy

Capozzi et al, 2018

Worse energy resolution

Capozzi et al, 2018

Backgrounds

Capozzi et al, 2018

