Beyond the standard model physics at the HL-LHC with CMS

Emanuele Usai on behalf of CMS Collaboration

SUSY 2019 — 23 May 2019

Outline

CMS Phase 2 upgrade and the HL-LHC dark matter & dark sector exotic leptons high-mass resonances summary

Plan

HL-LHC

Delphes simulations

HL-LHC simulations need large statistics!

Systematic scenarios:
Same as Run2
HLLHC estimation from 1812.07831 (many systematics reduced ~50%)
No systematics (limit case)

Luminosity scenario: 300/fb (~same as Run3) 3000/fb

dark matter & dark sector

Mono-Z DM

Majorana nu → I + qq

Dark photon with displ. mu

Mono-Z DM

Other selections

$$\begin{array}{ll} \Delta\phi(\vec{p_{\mathrm{T}}}^{\ell\ell},\vec{p_{\mathrm{T}}}^{\mathrm{miss}}) & > 2.6 \\ |p_{\mathrm{T}}^{\mathrm{miss}} - p_{\mathrm{T}}^{\ell\ell}|/p_{\mathrm{T}}^{\ell\ell} & < 0.4 \\ \Delta\phi(\vec{p_{\mathrm{T}}}^{j},\vec{p_{\mathrm{T}}}^{\mathrm{miss}}) & > 0.5 \ \mathrm{rad} \end{array}$$

FTR-18-007 and arxiv:1812.07831

Majorana nu → I + qq

discriminating variable

FTR-18-006 and arxiv:1812.07831

11

Majorana nu → I + qq

FTR-18-006 and arxiv:1812.07831

Dark photon with displaced muons

Analysis needs dedicated displaced muon trigger Depending on muon upgrade performance

 n_D

Dedicated displaced standalone algorithm (DSA)

Designed for highly displaced muons

Leaving hits only in muon detector

Pileup muons
Mostly forward

Rejected by muon pT cut and back to back

3D Distance of closest approach to the PV

13

exotic leptons

Leptoquarks pair → t + lept

Leptoquark → b + tau

e*, mu* → II+gamma

Leptoquarks pair → t + lept

Probe all combinations of jets, lepton, pTmiss Choose combination that minimizes chi2-like variable

Leptoquark -> b + tau

AK4 jet $p_{\text{T,jet}} > 50 \text{ GeV}$ and $|\eta_{\text{jet}}| < 2.4$

Isolated electron, muon veto

Mass limit: 1.5 TeV

Leptoquark -> b + tau

FTR-18-028 and arxiv:1812.07831

AK4 jet $p_{\text{T,jet}} > 50 \text{ GeV}$ and $|\eta_{\text{jet}}| < 2.4$

Isolated electron, muon veto

EXO-17-016

Mass limit: 1.5 TeV

e*, mu* → II+gamma

FTR-18-029 and arxiv:1812.07831

Mass limit 5.1 TeV

5sigma discovery reach: 5.1 TeV

e*, mu* → II+gamma

FTR-18-029 and arxiv:1812.07831

Mass limit 5.1 TeV

5sigma discovery reach: 5.1 TeV

high-mass resonances

VBF X → HH → bbbb

RS gluon → tt

W' → tau nu

VBFX -> HH -> bbbb

FTR-18-003 and arxiv:1812.07831

RS gluon -> tt

FTR-18-009 and arxiv:1812.07831

Single lepton

Mass limit 6.5 TeV

5sigma discovery reach 5.5 TeV

RS gluon -> tt

FTR-18-009 and arxiv:1812.07831

Single lepton

Mass limit 6.5 TeV

taunu

AK4 jet $p_{\rm T} > 30 \, {\rm GeV} \ {\rm and} \ |\eta| < 2.7$ tau_h ID

 $p_{\mathrm{T}}^{\mathrm{miss}}$ satisfies $0.7 < p_{\mathrm{T}}^{\tau}/p_{\mathrm{T}}^{\mathrm{miss}} < 1.3$

Mass limit 7 TeV

---- expected limit, median

expected limit $\pm 1 \sigma$

expected limit \pm 2 σ LO SSM W' , theory

expectation

5sigma discovery reach 6.3 TeV

SSM W'

CMS Phase-2

95 % CL

 10^2

 10^{-2}

Simulation Preliminary

taunu

AK4 jet $p_{\rm T} > 30 \, {\rm GeV} \ {\rm and} \ |\eta| < 2.7$ tau_h ID

FTR-18-030 and arxiv:1812.07831

Mass limit 7 TeV

5sigma discovery reach 6.3 TeV

SSM W'

These results collected in the Yellow Report:

Beyond the Standard Model
Physics at the HL-LHC
and HE-LHC

CMS+ATLAS+LHCb+ALICE +theory

arXiv:1812.07831

Summary

- HL-LHC: push the limits of the LHC program 5-7x inst. luminosity 14 TeV, 200PU 10x integrated luminosity of upcoming Run3
- CMS Phase 2: ambitious hardware upgrade necessary to cope with radiation damage and 200PU new tracker up to eta=4, track trigger high granularity forward calorimeter
- Most searches will greatly benefit the increased luminosity and the improved detector.
 5sigma discovery achievable for multi-TeV resonances
 Some resonance searches reaching the limits of the phase space

Backup