Flavorful Higgs Bosons
at the LHC

Based on arxiv:1610.02398 with W. Altmannshofer, J. Eby, S. Gori, M. Lotito, M. Martone,
arxiv:1712.01847 with W. Altmannshofer, S. Gori, D. J. Robinson
arxiv:1904.10956 with W. Altmannshofer, B. Maddock

Douglas Tuckler
UC Santa Cruz

SUSY 2019
05/23/2019
Extended Higgs Sectors

❖ Motivations:

1. Why should the scalar sector be so simple?
2. Hierarchy problem (e.g. SUSY)
3. Dark matter (e.g. SM+singlet scalar, Inert Doublet Model)
4. The SM Flavor Puzzle

❖ Simple extension of the SM with additional Higgs bosons: Two Higgs Doublet Model (2HDM)

❖ Extra CP-even Higgs (H), CP-odd Higgs (A), and charged Higgs (H±)
The SM Flavor Puzzle

- Experimentally, we know that the 125 GeV Higgs boson couples/gives mass to
 - 3rd generation quarks (t, b) and leptons (tau)
 - Gauge bosons (W, Z)

ATLAS/CMS Combined

arxiv:1606.02266
The SM Flavor Puzzle

- Experimentally, we know that the 125 GeV Higgs boson couples/gives mass to
 - 3rd generation quarks (t,b) and leptons (tau)
 - Gauge bosons (W,Z)

[Graph showing CMS HL-LHC Projection with mass (GeV) on the x-axis and \(\lambda \) or \((g/2v)^{1/2} \) on the y-axis, with points for t, b, \(\tau \), and WZ, labeled with 68% CL.]
The SM Flavor Puzzle

- Experimentally, we know that the 125 GeV Higgs boson couples/gives mass to:
 - 3rd generation quarks (t,b) and leptons (tau)
 - Gauge bosons (W,Z)
- **What about the Higgs couplings to light fermions?**
 - Charm Yukawa: LHC bounds exist, but this is very challenging!
 - SM couplings to electrons, u, d, s out of reach of LHC

CMS HL-LHC Projection

![CMS HL-LHC Projection Graph](attachment:image.png)

D. Tuckler
The SM Flavor Puzzle

- Experimentally, we know that the 125 GeV Higgs boson couples/gives mass to
 - 3rd generation quarks (t,b) and leptons (tau)
 - Gauge bosons (W,Z)
- **What about the Higgs couplings to light fermions?**
 - Charm Yukawa: LHC bounds exist, but this is very challenging!
 - SM couplings to electrons, u, d, s out of reach of LHC

CMS HL-LHC Projection

Experimentally, we don’t know if the 125 GeV Higgs boson couples to electron and light quarks!

CMS-TDR-15-02
Does the 125 GeV Higgs boson give mass to all fermions?
(or why are the couplings to light fermions so small?)
Additional Sources of EWSB

\[\mathcal{M} = \mathcal{M}_0 + \Delta \mathcal{M} \]

- Due to the Higgs boson of the SM
- Gives the bulk of \(m_{t,b,\tau} \)

- Due to some extra source of mass
- Gives the bulk of \(m_{u,d,c,s,e,\mu} \)

Additional Sources of EWSB

\[\mathcal{M} = \mathcal{M}_0 + \Delta \mathcal{M} \]

- Due to the Higgs boson of the SM
- Gives the bulk of \(m_{t,b,\tau} \)

- Due to some extra source of mass
- Gives the bulk of \(m_{u,d,c,s,e,\mu} \)

❖ Simplest realization = Two Higgs Doublet Model (2HDM)

\[\mathcal{L} = Y \bar{f} f \Phi + Y' \bar{f} f \Phi' \quad \Rightarrow \quad \mathcal{M} = \nu Y + \nu' Y' \]

- 125 GeV Higgs (h)
- Additional Higgs bosons (H, A, H*)
Additional Sources of EWSB

\[\mathcal{M} = \mathcal{M}_0 + \Delta \mathcal{M} \]

- Due to the Higgs boson of the SM
- Gives the bulk of \(m_{t,b,\tau} \)
- Due to some extra source of mass
- Gives the bulk of \(m_{u,d,c,s,e,\mu} \)

Simplest realization = Two Higgs Doublet Model (2HDM)

\[\mathcal{L} = Y \overline{f} f \Phi + Y' \overline{f} f \Phi' \quad \rightarrow \quad \mathcal{M} = \nu Y + \nu' Y' \]

125 GeV Higgs (h)

Want a flavor structure such that \(Y \) is rank 1 and \(Y' \) is generic
Flavorful 2HDMs

(arxiv:1610.02398 W. Almannshofer, J. Eby, S. Gori, M. Lotito, M. Martone, DT)

- Rank 1 SM Higgs couplings → SM Higgs couples dominantly to third generation fermions

\[Y_{u,d} \sim \frac{\sqrt{2}}{v} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & m_{t,b} \end{pmatrix}, \quad Y_{\nu,u,d} \sim \frac{\sqrt{2}}{v'} \begin{pmatrix} m_{u,d} & m_{u,d} & m_{u,d} \\ m_{u,d} & m_{c,s} & m_{c,s} \\ m_{u,d} & m_{c,s} & m_{c,s} \end{pmatrix} \]

- No discrete symmetries! Flavor changing Higgs couplings are present.

- FCNCs are suppressed by an approximate U(2) symmetry between the 1st and 2nd generations.

 - Tree level Higgs contributions to meson oscillations are small and may accommodate current data mildly better than the SM (W. Altmannshofer, S. Gori, D. Robinson, DT arxiv:1712.01847)

Naturally explains the fermion mass hierarchy if \(v' \ll v \)

D. Tuckler
Generating the CKM Matrix

- The Yukawa structure of the 2HDM must reproduce the CKM matrix.
- CKM matrix can originate from the rotation matrices that diagonalize the up quark mass matrices OR the down quark mass matrices
Generating the CKM Matrix

- The Yukawa structure of the 2HDM must reproduce the CKM matrix.
- CKM matrix can originate from the rotation matrices that diagonalize the up quark mass matrices OR the down quark mass matrices.

Up quark sector CKM

\[Y'_{1u} \sim \frac{\sqrt{2}}{v'} \begin{pmatrix} m_u & \lambda_c m_c & \lambda_c^3 m_t \\ m_u & m_c & \lambda_c^2 m_t \\ m_u & m_c & m_c \end{pmatrix} \]
Generating the CKM Matrix

- The Yukawa structure of the 2HDM must reproduce the CKM matrix.
- CKM matrix can originate from the rotation matrices that diagonalize the up quark mass matrices OR the down quark mass matrices.

\[
Y'_{uu} \sim \frac{\sqrt{2}}{v'} \begin{pmatrix}
m_u & \lambda_c m_c & \lambda_c^3 m_t \\
m_u & m_c & \lambda_c^2 m_t \\
m_u & m_c & m_c
\end{pmatrix}
\]

Leads to flavor violating Higgs couplings to up quarks
Generating the CKM Matrix

- The Yukawa structure of the 2HDM must reproduce the CKM matrix.
- CKM matrix can originate from the rotation matrices that diagonalize the up quark mass matrices OR the down quark mass matrices

Up quark sector CKM

\[Y'^u \sim \frac{\sqrt{2}}{v'} \begin{pmatrix} m_u & \lambda c m_c & \lambda^3 c m_t \\ m_u & m_c & \lambda^2 c m_t \\ m_u & m_c & m_c \end{pmatrix} \]

Leads to flavor violating Higgs couplings to up quarks

Down quark sector CKM

\[Y'^d \sim \frac{\sqrt{2}}{v'} \begin{pmatrix} m_d & \lambda c m_s & \lambda^3 c m_b \\ m_d & m_s & \lambda^2 c m_b \\ m_d & m_s & m_s \end{pmatrix} \]

Leads to flavor violating Higgs couplings to down quarks
Coupling Modifications

<table>
<thead>
<tr>
<th></th>
<th>κ_H^H</th>
<th>$\kappa_H^H, \kappa_c^H, \kappa_t^H$</th>
<th>$\kappa_d^H, \kappa_s^H, \kappa_b^H$</th>
<th>$\kappa_e^H, \kappa_\mu^H, \kappa_\tau^H$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I</td>
<td>$c_{\beta-\alpha}$</td>
<td>$\frac{1}{t_\beta} \frac{s_\alpha}{c_\beta}$</td>
<td>$\frac{1}{t_\beta} \frac{s_\alpha}{c_\beta}$</td>
<td>$\frac{1}{t_\beta} \frac{s_\alpha}{c_\beta}$</td>
</tr>
<tr>
<td>Type II</td>
<td>$c_{\beta-\alpha}$</td>
<td>$\frac{1}{t_\beta} \frac{s_\alpha}{c_\beta}$</td>
<td>$\frac{c_\alpha}{s_\beta}$</td>
<td>$\frac{c_\alpha}{s_\beta}$</td>
</tr>
<tr>
<td>Flavorful</td>
<td>$c_{\beta-\alpha}$</td>
<td>$\frac{c_\alpha}{t_\beta \frac{s_\beta}{c_\beta}}, \frac{c_\alpha}{t_\beta \frac{s_\beta}{c_\beta}}, \frac{1}{t_\beta} \frac{s_\alpha}{c_\beta}$</td>
<td>$\frac{c_\alpha}{t_\beta \frac{s_\beta}{c_\beta}}, \frac{c_\alpha}{t_\beta \frac{s_\beta}{c_\beta}}, \frac{1}{t_\beta} \frac{s_\alpha}{c_\beta}$</td>
<td>$\frac{c_\alpha}{t_\beta \frac{s_\beta}{c_\beta}}, \frac{c_\alpha}{t_\beta \frac{s_\beta}{c_\beta}}, \frac{1}{t_\beta} \frac{s_\alpha}{c_\beta}$</td>
</tr>
</tbody>
</table>
Coupling Modifications

<table>
<thead>
<tr>
<th></th>
<th>κ_V^H</th>
<th>$\kappa_u^H, \kappa_c^H, \kappa_t^H$</th>
<th>$\kappa_d^H, \kappa_s^H, \kappa_b^H$</th>
<th>$\kappa_e^H, \kappa_\mu^H, \kappa_\tau^H$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I</td>
<td>$c_{\beta-\alpha}$</td>
<td>$\frac{1}{t_\beta} \frac{s_\alpha}{c_\beta}$</td>
<td>$\frac{1}{t_\beta} \frac{s_\alpha}{c_\beta}$</td>
<td>$\frac{1}{t_\beta} \frac{s_\alpha}{c_\beta}$</td>
</tr>
<tr>
<td>Type II</td>
<td>$c_{\beta-\alpha}$</td>
<td>$\frac{1}{t_\beta} \frac{s_\alpha}{c_\beta}$</td>
<td>$\frac{c_\alpha}{s_\beta}$</td>
<td>$\frac{c_\alpha}{s_\beta}$</td>
</tr>
<tr>
<td>Flavorful</td>
<td>$c_{\beta-\alpha}$</td>
<td>$\frac{c_\alpha}{t_\beta \frac{s_\beta}{s_\beta}}$, $\frac{c_\alpha}{t_\beta \frac{s_\beta}{s_\beta}}$, $\frac{1}{t_\beta} \frac{s_\alpha}{c_\beta}$</td>
<td>$\frac{c_\alpha}{t_\beta \frac{s_\beta}{s_\beta}}$, $\frac{c_\alpha}{t_\beta \frac{s_\beta}{s_\beta}}$, $\frac{1}{t_\beta} \frac{s_\alpha}{c_\beta}$</td>
<td>$\frac{c_\alpha}{t_\beta \frac{s_\beta}{s_\beta}}$, $\frac{c_\alpha}{t_\beta \frac{s_\beta}{s_\beta}}$, $\frac{1}{t_\beta} \frac{s_\alpha}{c_\beta}$</td>
</tr>
</tbody>
</table>

1. Non-universal fermion couplings. (Similar pattern for H^\pm and A)
2. Couplings to third generation are suppressed by $\tan\beta$
Main results:

1. Additional Higgs bosons can decay dominantly to 2nd generation quark and leptons
2. Collider signatures are distinct from typically studied 2HDMs (e.g. Type I, II)
3. Weak collider constraints
Phenomenology of Flavorful Higgs Bosons

Main results:

1. Additional Higgs bosons can decay dominantly to 2nd generation quark and leptons
2. Collider signatures are distinct from typically studied 2HDMs (e.g. Type I, II)
3. Weak collider constraints

Let’s see how this shows up when the the CKM originates in the down quark sector
Decays of the Charged Higgs (H^{\pm})

$$\tan\beta = 50, \cos(\beta - \alpha) = 0.05$$

![Graph showing decay rates for different processes]

- **Flavorful**
- **Type II**

Processes:
- $c\bar{b}$, $c\bar{s}$, $t\bar{b}$, $t\bar{s}$, $W^{\pm}h$, $\mu\nu\bar{\mu}$, $\tau\nu\bar{\tau}$, $t\bar{d}$, $c\bar{d}$
Decays of the Charged Higgs (H^\pm)

- "Classic" decay modes ($tb, \tau\nu$) are suppressed

$tan\beta = 50, \cos(\beta - \alpha) = 0.05$
Decays of the Charged Higgs (H^\pm)

- "Classic" decay modes (tb, $\tau\nu$) are suppressed.
- Dominant decay modes are to charm-strange, charm-bottom — these have only been searched for below the top threshold!
- Decay to ts becomes sizeable and of the order of decay to tb.

\[
\tan\beta = 50, \cos(\beta - \alpha) = 0.05
\]
Production of the Charged Higgs (H^{\pm})

- Dominant production is from s-channel charm-strange fusion (2nd generation quarks!)
- “Classic” production mode (associated production with top quark) is suppressed.
Decays of the Neutral Higgs (H)

\[\tan \beta = 50, \cos(\beta - \alpha) = 0.05 \]
Decays of the Neutral Higgs (H)

- "Classic" decays modes ($\tau\tau$, bb) are suppressed

\[\tan \beta = 50, \cos(\beta - \alpha) = 0.05 \]
Decays of the Neutral Higgs (H)

- “Classic” decays modes ($\tau\tau$, bb) are suppressed
- Flavor-violating (ct, bs, $\tau\mu$) decays are now present (compared to Type II)!
Decays of the Neutral Higgs (H)

- "Classic" decays modes ($\tau\tau$, bb) are suppressed
- Flavor-violating (ct, bs, $\tau\mu$) decays are now present (compared to Type II)!
- Dominant decay modes are to charm-charm and charm-top
- Decay to muons becomes sizable
- Inspired an ATLAS search! arxiv:1901.08144

$$\tan\beta = 50, \cos(\beta - \alpha) = 0.05$$
Production of the Neutral Higgs (H)

- Dominant production mode is charm-charm fusion
- Associated production with a b quark is generically suppressed compared to Type II 2HDM
- Dominant contribution is from strange quark initiated process!
Collider Constraints on H^\pm

\[\cos(\beta - \alpha) = 0.05 \]

$\frac{BR_{\text{exc}}}{BR}$ vs m_{H^\pm} [GeV]

- $\tan \beta = 10$
- $\tan \beta = 50$

- $t\bar{b}_{\text{assoc}}$
- $t\bar{b}_{qq'}$
- $\tau \nu_{\tau}$
- $c\bar{s}$
Collider Constraints on H^\pm

No bound above top threshold!

- Strongest constraints come from di-jet searches
- “Classic” search (tb) probe cross sections that are ~ 10 times larger than our predictions
Collider Constraints on H^\pm

No bound above top threshold!
- Strongest constraints come from di-jet searches
- “Classic” search (tb) probe cross sections that are ~ 10 times larger than our predictions

Below top threshold
- “Classic” search ($\tau \nu$) probe BRs that are ~ 20-100 times larger than our predictions, even at large $\tan \beta$!
- Strongest constraints are from searches for H^\pm decays to cb, cs
Collider Constraints on H

- Non-standard phenomenology means that the standard searches are not necessarily the most sensitive!

- Most stringent constraints are from **di-muon** searches
 - This is $\tan\beta$ dependent! Lowering $\tan\beta$ weakens the constraints.
 - “Classic” search ($\tau\tau$) does not yet probe our model!

Graph:

- $\tan\beta=50$, $\cos(\beta-\alpha)=0.05$

Axes:
- m_H [GeV]
- $\frac{\sigma_{\text{exc}}}{\sigma}$
Novel Collider Signatures

<table>
<thead>
<tr>
<th>Neutral Higgs (H)</th>
<th>Charged Higgs (H±)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$pp \rightarrow H \rightarrow tc$</td>
<td>$pp \rightarrow tH^\pm \rightarrow tcb$</td>
</tr>
<tr>
<td>$pp \rightarrow H \rightarrow \tau \mu$</td>
<td>$pp \rightarrow H^\pm \rightarrow cs$</td>
</tr>
<tr>
<td>$pp \rightarrow tH \rightarrow ttc$</td>
<td>$pp \rightarrow tH^\pm \rightarrow tcs, tts$</td>
</tr>
<tr>
<td>$pp \rightarrow H \rightarrow cc$</td>
<td>$pp \rightarrow tH^\pm \rightarrow t\mu\nu_\mu$</td>
</tr>
<tr>
<td>$pp \rightarrow tH \rightarrow tcc$</td>
<td></td>
</tr>
</tbody>
</table>
Novel Collider Signatures

<table>
<thead>
<tr>
<th>Neutral Higgs (H)</th>
<th>Charged Higgs (H±)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(pp \rightarrow H \rightarrow tc)</td>
<td>(pp \rightarrow tH^\pm \rightarrow tcb)</td>
</tr>
<tr>
<td>(pp \rightarrow H \rightarrow \tau\mu)</td>
<td>(pp \rightarrow H^\pm \rightarrow cs)</td>
</tr>
<tr>
<td>(pp \rightarrow tH \rightarrow ttc)</td>
<td>(pp \rightarrow tH^\pm \rightarrow tcs, tts)</td>
</tr>
<tr>
<td>(pp \rightarrow H \rightarrow cc)</td>
<td>(pp \rightarrow tH^\pm \rightarrow t\mu\nu_\mu)</td>
</tr>
<tr>
<td>(pp \rightarrow tH \rightarrow tcc)</td>
<td></td>
</tr>
</tbody>
</table>
Phenomenology with Up Sector CKM

(arxiv: 1904.10956 W. Almannshofer, B. Maddock, DT)

- Similar collider phenomenology to CKM from up quark sector.

\[Y^{nu} \sim \frac{\sqrt{2}}{v'} \begin{pmatrix} m_u & \lambda_c m_c & \lambda_c^3 m_t \\ m_u & m_c & \lambda_c^2 m_t \\ m_u & m_c & m_c \end{pmatrix} \]

- Flavor constraints from D meson mixing are avoided.
- Strongest constraint from radiative b decay \(b \rightarrow s \gamma \)
- Can lead to sizable flavor violating couplings of SM-like Higgs to up quarks
 - New probe: rare top decays!
Rare Top Decays

(arxiv: 1904.10956 W. Almannshofer, B. Maddock, DT)

Rare Top Decays in the SM

- Loop suppressed
- GIM suppressed
- Unobservable at the LHC or future colliders

![Diagram of a top quark decay](image)

<table>
<thead>
<tr>
<th></th>
<th>SM Prediction</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t \to hu$</td>
<td>$(3.66^{+0.94}_{-0.70} \pm 0.67) \times 10^{-17}$</td>
<td>$< 0.12%$</td>
</tr>
<tr>
<td>$t \to hc$</td>
<td>$(4.19^{+1.08}_{-0.80} \pm 0.16) \times 10^{-15}$</td>
<td>$< 0.11%$</td>
</tr>
</tbody>
</table>

ATLAS arXiv:1812.11568
Rare Top Decays

(arxiv: 1904.10956 W. Almannshofer, B. Maddock, DT)

Rare Top Decays in the SM

- Loop suppressed
- GIM suppressed
- Unobservable at the LHC or future colliders

![Diagram of rare top decay](attachment:image.png)

<table>
<thead>
<tr>
<th></th>
<th>SM Prediction</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t \rightarrow hu$</td>
<td>$(3.66^{+0.94}_{-0.70} \pm 0.67) \times 10^{-17}$</td>
<td>$< 0.12%$</td>
</tr>
<tr>
<td>$t \rightarrow hc$</td>
<td>$(4.19^{+1.08}_{-0.80} \pm 0.16) \times 10^{-15}$</td>
<td>$< 0.11%$</td>
</tr>
</tbody>
</table>

Flavorful 2HDM

- Flavor-violating SM Higgs couplings
- Tree level contribution
- Can experimental searches test the parameter space?

ATLAS arXiv:1812.11568
Rare Top Decays

(arxiv: 1904.10956 W. Almannshofer, B. Maddock, DT)

\[t \rightarrow hu \]

\[t \rightarrow hc \]
Summary

- The SM flavor puzzle can be addressed in a **Flavorful 2HDM** with rank-1 structure for the SM-like Higgs boson
 - Theory of flavor needs a UV completion! Can use the "flavor-locking" mechanism for down quark CKM (see arxiv:1507.00009 and 1712.01847 for details) or Froggatt-Nielsen for up quark CKM (see arxiv: 1904.10956 for implementation).

- "Clever" flavor structures to suppress large FCNCs (but still have off-diagonal couplings!)
 - Distinct production and decays modes involving 2nd gen. fermions
 - Weak collider constraints
 - New collider signatures that can be looked for at the LHC
 - Complimentary approach in rare top decays

- Several benchmarks for the Flavorful 2HDM have been delivered to experimentalists, and have inspired searches already! See link below:

 https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWG3Flavorful2HDM
Thanks!
Questions?
Back up Slides
Current LHC Searches

from S. Gori - “(Flavor) gaps in Heavy Higgs searches”
@ Triggering on New Physics at the HL-LHC
Paradigm Shift?

- Current LHC studies have focused on flavor conserving 2HDMs

<table>
<thead>
<tr>
<th>Model</th>
<th>u_R^i</th>
<th>d_R^i</th>
<th>e_R^i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I</td>
<td>Φ</td>
<td>Φ</td>
<td>Φ</td>
</tr>
<tr>
<td>Type II</td>
<td>Φ</td>
<td>Φ'</td>
<td>Φ'</td>
</tr>
<tr>
<td>Flipped</td>
<td>Φ</td>
<td>Φ'</td>
<td>Φ</td>
</tr>
<tr>
<td>Lepton-specific</td>
<td>Φ</td>
<td>Φ</td>
<td>Φ'</td>
</tr>
</tbody>
</table>

Are we missing interesting signatures by only focusing on these 2HDMs?

Models that break flavor conservation predict very distinct signatures that we miss if we only focus on the 2HDMs above! They can also provide insight into the SM Flavor Puzzle.
Brief Introduction to 2HDMs

- Introduce a second $SU(2)_L$ doublet that mixies with Higgs doublet of the SM

<table>
<thead>
<tr>
<th></th>
<th>SM</th>
<th>2HDM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Higgs doublets</td>
<td>Φ</td>
<td>Φ, Φ'</td>
</tr>
<tr>
<td>Physical states</td>
<td>h</td>
<td>h, H, A, H^\pm</td>
</tr>
<tr>
<td>Yukawa couplings</td>
<td>Y_{ij}</td>
<td>Y_{ij}, Y'_{ij}</td>
</tr>
</tbody>
</table>

- At the minimum of the potential both Higgs doublets acquire vacuum expectation values: $\langle \Phi \rangle = v$, $\langle \Phi' \rangle = v'$

- Phenomenology of a 2HDM is determined by two parameters:
 - β — mixing angle between imaginary and charged components of the Higgs doublets; parameterized by $\tan\beta = v/v'$
 - α — mixing angle between neutral components of Higgs doublets; parameterized via $\cos(\beta - \alpha)$

D. Tuckler
Introduce a second $SU(2)_L$ doublet that mixies with Higgs doublet of the SM

<table>
<thead>
<tr>
<th>Higgs doublets</th>
<th>SM</th>
<th>2HDM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Φ</td>
<td>Φ, Φ'</td>
</tr>
<tr>
<td>Physical states</td>
<td>h</td>
<td>h, H, A, H^\pm</td>
</tr>
<tr>
<td>Yukawa couplings</td>
<td>Y_{ij}</td>
<td>Y_{ij}, Y'_{ij}</td>
</tr>
</tbody>
</table>

At the minimum of the potential both Higgs doublets acquire vacuum expectation values: $\langle \Phi \rangle = v, \langle \Phi' \rangle = v'$

Phenomenology of a 2HDM is determined by two parameters:

- β — mixing angle between imaginary and charged components of the Higgs doublets; parameterized by $\tan\beta = v/v'$
- α — mixing angle between neutral components of Higgs doublets; parameterized via $\cos(\beta - \alpha)$
Flavor Changing Neutral Currents

- Generic 2HDMs have Yukawa couplings that are not flavor diagonal
 - Can lead to large tree-level Higgs contributions to FCNC (e.g. meson oscillations)
- How to eliminate flavor changing Higgs couplings? Introduce symmetries!
 - Higgs couples are flavor conserving

<table>
<thead>
<tr>
<th>Model</th>
<th>u^i_R</th>
<th>d^i_R</th>
<th>e^i_R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I</td>
<td>Φ</td>
<td>Φ</td>
<td>Φ</td>
</tr>
<tr>
<td>Type II</td>
<td>Φ</td>
<td>Φ'</td>
<td>Φ'</td>
</tr>
<tr>
<td>Flipped</td>
<td>Φ</td>
<td>Φ'</td>
<td>Φ</td>
</tr>
<tr>
<td>Lepton-specific</td>
<td>Φ</td>
<td>Φ</td>
<td>Φ'</td>
</tr>
</tbody>
</table>
Flavor Changing Neutral Currents

- Generic 2HDMs have Yukawa couplings that are not flavor diagonal
- Can lead to large tree-level Higgs contributions to FCNC (e.g. meson oscillations)
- How to eliminate flavor changing Higgs couplings? Introduce symmetries!
- Higgs couples are flavor conserving

<table>
<thead>
<tr>
<th>Model</th>
<th>u_R^i</th>
<th>d_R^i</th>
<th>e_R^i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I</td>
<td>Φ</td>
<td>Φ</td>
<td>Φ</td>
</tr>
<tr>
<td>Type II</td>
<td>Φ</td>
<td>Φ'</td>
<td>Φ'</td>
</tr>
<tr>
<td>Flipped</td>
<td>Φ</td>
<td>Φ'</td>
<td>Φ</td>
</tr>
<tr>
<td>Lepton-specific</td>
<td>Φ</td>
<td>Φ</td>
<td>Φ'</td>
</tr>
</tbody>
</table>

Supersymmetry has been the driving force behind searches for additional Higgs bosons
New Signatures for H^\pm

- Charged Higgs-top associated production
- Di-jet resonance + top quark
- Sizable $\sigma \times$ BR of a few hundred of fb - pb
- Unconstrained by current LHC searches

$pp \rightarrow tH^\pm \rightarrow tcb$

\[\sigma(pp\rightarrow tH^\pm \rightarrow tcb) \text{ [pb] for cos}(\beta-\alpha)=0 \]

$\tan\beta$

m_{H^\pm} [GeV]
New Signatures for H

- Quark-quark fusion production
- Top-charm resonances
- Use leptonically decaying top quark as a trigger
- Sizable $\sigma \times \text{BR}$ of hundreds of fb to a few pb
- Shaded region = constraints from di-muon searches

$pp \rightarrow H \rightarrow tc$

$\sigma(pp \rightarrow H \rightarrow tc) \ [\text{pb}]$ for $\cos(\beta-\alpha)=0$

D. Tuckler
New Signatures for H

\[pp \to H \to \tau \mu \]

- Quark-quark fusion production
- \(\tau \mu \) resonance
- Sizable \(\sigma \times \text{BR} \) of a few to tens of fb
New Signatures for H

- $pp \rightarrow tH \rightarrow ttc$
- Higgs-top associated production
- Look for same-sign top quarks
- Two same sign final state leptons
- Sizable $\sigma \times \text{BR}$ of a few to tens of fb
Constraints from 125 GeV Higgs
Flavor Constraints on Down Sector CKM

(arxiv:1712.01847 W. Altmannshofer, S. Gori, D. Robinson, DT)

- Flavor changing Higgs couplings generate tree level contributions to meson oscillation.
- There are mild tensions between SM predictions and experimental measurements. Our model can accommodate current data slightly better than the SM.
Flavor Constraints on Down Sector CKM

(arxiv:1712.01847 W. Altmannshofer, S. Gori, D. Robinson, DT)

- Benchmark point: \(m_A = m_H = 500 \text{ GeV}, \tan\beta = 5, \cos(\beta-\alpha) = 0 \)
- Observables that are sensitive to Higgs bosons: \(\Delta M_K, \Delta M_{B_{d,s}}, \epsilon_K, \phi_{d,s} \)

<table>
<thead>
<tr>
<th>Data</th>
<th>SM Prediction</th>
<th>NP Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta M_K)</td>
<td>((5.294 \pm 0.002) \times 10^{-3} \text{ ps}^{-1})</td>
<td>((4.7 \pm 1.8) \times 10^{-3} \text{ ps}^{-1})</td>
</tr>
<tr>
<td>(\Delta M_{B_{d}})</td>
<td>0.5055 \pm 0.0020 \text{ ps}^{-1}</td>
<td>0.63 \pm 0.07 \text{ ps}^{-1}</td>
</tr>
<tr>
<td>(\Delta M_{B_{s}})</td>
<td>17.757 \pm 0.021 \text{ ps}^{-1}</td>
<td>19.6 \pm 1.3 \text{ ps}^{-1}</td>
</tr>
<tr>
<td>(\epsilon_K)</td>
<td>((2.288 \pm 0.011) \times 10^{-3})</td>
<td>((1.81 \pm 0.28) \times 10^{-3})</td>
</tr>
<tr>
<td>(\phi_d)</td>
<td>43.7 \pm 2.4°</td>
<td>47.5 \pm 2.0°</td>
</tr>
<tr>
<td>(\phi_s)</td>
<td>-1.2 \pm 1.8°</td>
<td>-2.12 \pm 0.04°</td>
</tr>
</tbody>
</table>

- Quantify the goodness of the model by constructing a \(\chi^2 \)-like function
- Observables that are sensitive to Higgs bosons:

\[
X^2_{\text{loop}} = \sum_i \left[\frac{\left(O_{i}^{\text{NP}} + O_{i}^{\text{SM}} - O_{i}^{\text{exp}} \right)^2}{\left(\sigma O_{i}^{\text{exp}} \right)^2 + \left(\sigma O_{i}^{\text{SM}} \right)^2} \right]
\]

- Zero means that the model perfectly reproduces the experimental data
- Compare to SM: \(X^2_{\text{loop}}(\text{SM}) \approx 10.8 \), \(X^2_{\text{loop}} \approx 7.1 \)

D. Tuckler
Flavor Constraints on Up Sector CKM

- Large contribution from charged Higgs in the loop
- Restrict charged Higgs mass to be above 800 GeV