

Strong SUSY production in leptonic channels at CMS

Nick Amin for the CMS collaboration

> SUSY2019 May 20, 2019

- ✓ Strong production modes have the largest cross-sections
 - often with high boson multiplicity from cascading decays
 - hadronic activity/many jets
- Leptonic final states among the cleanest
 - clear detector signal
 - lower branching ratio compared to hadronic analyses, but lower SM background (almost no QCD multijet)

CMS analyses

- Variety of CMS results for strong SUSY with final states containing ≥1 lepton + jets + (maybe) missing energy
- Overview of just a subset of results with gluino production
- Full list of public CMS results <u>here</u>

<u>SUS-17-012</u>	1 lep. + photon	<u>JHEP 01 (2019) 154</u>
<u>SUS-16-051</u>	top squark, 1 lep.	<u>JHEP 10 (2017) 019</u>
<u>SUS-16-042</u>	1 lep. , <i>Δφ</i> (lep,MET)	<u>Phys. Lett. B 780 (2018) 384</u>
<u>SUS-16-037</u>	1 lep. , large-R MJ	Phys. Rev. Lett. 119 (2017) 151802
<u>SUS-16-040</u>	RPV with 1 lep. , large-R MJ	<u>Phys. Lett. B 783 (2018) 114</u>
<u>SUS-18-003</u>	top squark, 2 OS lep. (e± <i>µ</i> ∓)	<u>JHEP 03 (2019) 101</u>
<u>SUS-16-034</u>	2 OS same-flavor lep.,	<u>JHEP 03 (2018) 076</u>
<u>SUS-19-008</u>	2 same-sign lep. or ≥3 lep.	PAS

1L $\Delta \phi$

- Target simplified SUSY models with at least 5 jets, large missing energy (MET) and one lepton
 - events binned in N_b, N_{jets}, H_T, L_T = MET + $p_T(lep)$
 - main backgrounds are $t\overline{t}$ and W+jets
- Angle between lepton and MET vector
 \$\Delta\phi\$ used as the main handle to suppress
 semileptonic tt
- Dileptonic tt background suppressed using the M_{T2} variable with the lepton and a track

$$M_{\text{T2}}(\vec{p}_{\text{T}}^{\ell}, \vec{p}_{\text{T}}^{t}, \vec{p}_{\text{T}}^{\text{miss}}) = \min_{\vec{p}_{\text{T}}^{(1)} + \vec{p}_{\text{T}}^{(2)} = \vec{p}_{\text{T}}^{\text{miss}}} \left\{ \max\left[M_{\text{T}}(\vec{p}_{\text{T}}^{\ell}, \vec{p}_{\text{T}}^{(1)}), M_{\text{T}}(\vec{p}_{\text{T}}^{t}, \vec{p}_{\text{T}}^{(2)}) \right] \right\}$$

1L Δφ

- Use low $\Delta \phi$ (<0.5-1.0) with a transfer factor to estimate background in high $\Delta \phi$ signal regions
- No significant excesses
 - set upper limits on T5qqqqWW production in gluino-LSP mass plane
 - exclude gluino masses up to 1.9TeV for light LSP

• Target models with large top quark multiplicity by selecting events with at least 6 jets (\geq 1 b tagged), large MET and large S_T = H_T + p_T(lep)

1L MJ

- events split into bins of N_b, then further binned in N_{jets}, H_T, S_T
- dominant background from $t\overline{t}$
- Variable M_J used to separate signal from $t\overline{t}$
 - recluster anti-k_T R=0.4 jets/leptons into R=1.4 to form "large-R jets"
 - M_J = sum of large-R jet masses
 - peaks higher for signal vs tt

 Define signal region as M_J>400 GeV and transverse mass m_T>140 GeV, consisting of 18 kinematic bins

 These variables are nearly uncorrelated, so use an "ABCD" extrapolation method to obtain prediction in signal region R4 from background-enriched R1,R2,R3 via ratios of the form N₄=N₃(N₂/N₁)

1L M_J

 $1L M_J (RPV)$

- Discriminant M_J used to probe R-parity violating models as well with a separate analysis
 - large third generation RPV couplings \rightarrow tbs final states
- Fit N_b distribution in bins of N_{jets} and M_J using low N_{jets}, low M_J as control regions to constrain systematics
 - $N_b=3,4$ bins dominated by gluon splitting ($g \rightarrow b\overline{b}$) systematic uncertainty
- Gluinos up to 1.6TeV are excluded

 $\tilde{g} \to t\bar{\tilde{t}} \to tbs$

- Analysis probes a wide variety of models in several categories
 - on-Z strong production and on-Z electroweak production
 - "edge search" for sleptons in invariant mass distribution
- GMSB model with LSP decaying into gravitino and Z
- Select opposite-sign same-flavor (OSSF) events (e[±]e[∓] or μ[±]μ[∓]) with at least 2 jets and MET > 100 GeV, resulting in 3 main backgrounds
 - Flavor symmetric processes producing same-flavor as often as opposite-flavor events (tt
 , W+W-) — estimate with e[±]μ[∓] data
 - DY+jets mismeasured MET estimate with data photons)
 - Z+v prompt neutrinos (WZ, ZZ, ttV, ...) MC + CR
- Final signal regions based on N_{jets}, N_b, H_T, M_{T2}, and MET
- Gluinos up to 1.8TeV excluded

- Preliminary full Run2 analysis based on strategies from two published 2016 analyses
 - <u>SUS-16-035/EPJC 77 (2017) 578</u>
 - <u>SUS-16-041/JHEP 02 (2018) 067</u>
- Baseline selection of 2 SS leptons (or 3+) and at least 2 jets
- SS signature virtually eliminates QCD, W, Z, tt
 processes
- Main backgrounds then come from
 - Fake/non-prompt leptons from tt
 , W+jets (data-driven "tight-to-loose" method)
 - ► Also suppress with m_T^{min} variable
 - Charge misid. (data-driven)
 - Rare SM processes: WZ, ttV, X+ γ , ...
- Then perform a multidimensional binning in N_{(b)jets}, MET, H_T, m_T^{min}, ...

11

- Group 168 total signal regions into 5 categories (*HighHigh*, *HighLow*, *LowLow*, *MultiLepton*, *LowMET*) → sensitive to particular topologies
- Observe data/MC agreement in combined fit over all signal regions, so set upper limits on simplified models

Exclude gluinos up to 1.25TeV in the T5qqqqVV model

 $2LSS + \ge 3L$

q

a

2L SS + ≥3L

- MultiLepton category contains both on-Z and off-Z requirements
- Exclusions reaching 900GeV for decays of second generation stop squarks providing H or Z bosons

 $2LSS + \geq 3L$

- LowMET category relaxed MET requirements thanks to the SS signature
- Exclusions on RPV models
 - T1tbs 1.7TeV
 - T1qqqqL 2.1TeV new

- Strong SUSY probed by many leptonic analyses in CMS
 - so far, no significant excesses, and exclusions pushed toward higher masses close to 2TeV
- There is still lots of **unexplored territory**
 - analyses in progress exploiting full Run2 dataset almost 4x luminosity (wrt 2016 dataset) — with sophisticated techniques
 - Run3/HLLHC/HELHC and beyond

1L $\Delta \phi$

 $1L \Delta \phi$

 $1L\Delta\phi$

Analysis	Multi-b a	nalysis	0-b analysis				
	$n_{\rm b} = 0$	$n_{\rm b} \ge 1$	$n_{\rm b} = 0$	$n_{\rm b} \ge 1$			
$n_{\rm jet}=3$	QCD bkg. fit		$R_{\rm CS}({ m W}^{\pm})$ det. (μ sample),				
$n_{\rm jet} = 4$	(e sample)	R _{CS} det.	QCD bkg. fit (e sample)	$R_{\rm CS}(t\bar{t}+{\rm jets})$ det.			
$n_{\rm jet} = 5$		$R_{\rm CS}$ det.	search bins	$R_{\rm CS}(t\bar{t}+{\rm jets})$ det.			
$n_{\rm jet} \ge 6$		search bins	search bins				

			Source	Uncertainty [%]
Source	Uncertainty for multi-b [%]	Uncertainty for 0-b [%]	Trigger	2
Dilepton control sample	0.9–7.0	0.3–18	Piloup	10
JES	0.3–18	0.7–26	I neup	10
Tagging of b jets	0.1–0.9	0.1–2.5	Lepton efficiency	2
Mistagging of light flavor jets	0.1–2.2	0.3–0.8	Isolated track veto	4
$\sigma(W+jets)$	0.3–9.3	0.3–10	Luminosity	2.5
$\sigma(t\bar{t})$	0.1–7.5	0.7–13	ISR	2-25
$\sigma(t\bar{t}V)$	0.2–20	0.1–3.8	Tagging of b jets	1–6
W polarization	0.1–3.3	0.7–14	Mistagging of light flavor jets	1_4
ISR reweighting $(t\bar{t})$	0.5–7.0	0.2–11		1 + 2 + 10
Pileup	0.4–7.1	0.1–20	JE5	3-40
Statistical uncertainty in MC events	5–30	5–36	Factorization/renormalization scale	1–3
			$p_{\mathrm{T}}^{\mathrm{miss}}$	2–20

multi-b

 $1L\Delta\phi$

11.	11.	L_{T}	$\Delta \phi$	$H_{\rm T}$	Bin	Signal T1tttt (#	$m_{\widetilde{g}}, m_{\widetilde{\chi}^0})$ [TeV]	Predicted	Observed					
njet	nb	[GeV]	[rad]	[GeV]	name	(1.9, 0.1)	(1.4, 1.1)	background	data					
				[500, 1000]	A01	< 0.01	3.02 ± 0.24	206 ± 15	194					
		[250, 450]	1.0	[1000, 1500]	A02	$0.03~\pm~0.01$	$0.37~\pm~0.08$	52.5 ± 8.2	48					
				≥1500	A03	0.07 ± 0.01	0.05 ± 0.03	18.0 ± 4.2	19					
				[500, 1000]	A04	0.03 ± 0.01	0.66 ± 0.11	13.1 ± 2.7	10					
=	=1	[450, 600]	0.75	[1000, 1500]	A05	0.05 ± 0.01	0.27 ± 0.07	4.5 ± 1.7	6					
				≥1500	A06	0.09 ± 0.01	0.03 ± 0.02	1.7 ± 1.0	5					
				[500, 1000]	A07	0.04 ± 0.01	0.08 ± 0.04	4.0 ± 1.6	4					
		[600, 750]	0.5	[1000, 1500]	A08	0.08 ± 0.01	0.35 ± 0.08	2.8 ± 1.3	5					
				>1500	A09	0.17 ± 0.02	0.02 ± 0.02	1.8 ± 1.2	2					
		>750	0.5	>500	A10	1.01 ± 0.04	0.28 ± 0.07	2.6 ± 1.1	2					
				[500, 1000]	B01	0.01 ± 0.01	2.06 ± 0.20	147 ± 11	143					
		[250, 450]	1.0	[1000, 1500]	B02	0.04 ± 0.01	< 0.01	43.5 ± 7.5	37					
I.C. 01				>1500	B03	0.13 ± 0.01	< 0.01	10.9 ± 2.8	12					
[6, 8]		2 [450, 600]		[500, 1000]	B04	0.02 ± 0.01	0.54 ± 0.10	9.4 ± 2.2	10					
	=2		0.75	[1000, 1500]	B05	0.10 ± 0.01	0.17 ± 0.06	3.4 ± 1.7	9					
				>1500	B06	0.19 ± 0.02	< 0.01	1.39 ± 0.82	2					
				[500, 1000]	B07	0.03 ± 0.01	< 0.01	2.4 ± 1.3	3					
		[600, 750]	0.5	[1000, 1500]	B08	0.10 ± 0.01	0.26 ± 0.07	1.16 ± 0.90	1					
				>1500	B09	0.24 ± 0.02	0.03 ± 0.02	1.05 ± 0.78	0					
		>750	0.5	>500	B10	1.50 ± 0.05	0.32 ± 0.08	0.42 ± 0.34	3					
		[250, 450]	1.0	[500, 1000]	C01	0.01 ± 0.01	1.03 ± 0.14	32.9 ± 3.3	34					
				[1000, 1500]	C02	0.06 ± 0.01	< 0.01	10.6 ± 2.1	5					
				>1500	C03	0.13 ± 0.01	< 0.01	2.93 ± 0.91	3					
	≥ 3			[500, 1000]	C04	0.03 ± 0.01	0.29 ± 0.07	1.38 ± 0.50	2					
		[450, 600]	0.75	[1000, 1500]	C05	0.09 ± 0.01	0.20 ± 0.06	0.72 ± 0.39	1					
				>1500	C06	0.20 ± 0.02	< 0.01	0.66 ± 0.45	0					
		>600	0.5	>500	C07	1.85 ± 0.05	0.23 ± 0.06	1.66 ± 0.69	2					
			1.0	[500, 1500]	D01	0.01 ± 0.01	0.90 ± 0.12	7.9 ± 1.1	7					
	1	[250, 450]	1.0	>1500	D02	0.03 ± 0.01	0.02 ± 0.02	2.15 ± 0.67	1					
	1=	> 150	0.75	[500, 1500]	D03	0.13 ± 0.01	0.72 ± 0.11	1.08 ± 0.39	0					
		≥ 450	0.75	>1500	D04	0.38 ± 0.02	0.10 ± 0.04	0.50 ± 0.27	1					
		[050 450]	1.0	[500, 1500]	E01	0.02 ± 0.01	1.15 ± 0.14	7.26 ± 0.97	9					
≥9	_	[250, 450]	1.0	>1500	E02	0.08 ± 0.01	< 0.01	2.81 ± 0.89	4					
	=2	> 150	0.75	[500, 1500]	E03	0.23 ± 0.02	0.83 ± 0.12	0.71 ± 0.26	2					
		≥450	0.75	≥1500	E04	0.72 ± 0.03	0.20 ± 0.05	0.59 ± 0.31	1					
		[250, 450]	1.0	[500, 1500]	F01	0.03 ± 0.01	0.79 ± 0.11	3.55 ± 0.72	3					
	\	[250, 450]	1.0	≥1500	F02	0.13 ± 0.01	< 0.01	0.83 ± 0.35	0					
	≥3	> 450	0.75	[500, 1500]	F03	0.31 ± 0.02	0.26 ± 0.06	0.33 ± 0.17	0					
		≥450	≥450	≥450	≥450	≥450	≥ 450 0.2	≥450 0.75	≥1500	F04	$1.04~\pm~0.04$	$0.17~\pm~0.05$	0.05 ± 0.05	0

0-b

11.	L _T	$\Delta \phi$	H_{T}	Bin	Signal T5qqqqW	$W(m_{\widetilde{g}}, m_{\widetilde{\chi}^0})$ [TeV]	Predicted	Observed
<i>n</i> jet	[GeV]	[rad]	[GeV]	name	(1.5, 1.0)	(1.9, 0.1)	background	data
	[250, 250]	1.0	[500,750]	G01	1.82 ± 0.29	< 0.01	102 ± 48	111
	[250, 550]	1.0	≥750	G02	$0.21~\pm~0.09$	$0.01~\pm~0.01$	$77~\pm~16$	100
	[250, 450]	1.0	[500,750]	G03	2.25 ± 0.32	< 0.01	24 ± 15	25
	[550,450]	1.0	\geq 750	G04	$0.29~\pm~0.11$	$0.04~\pm~0.01$	$22.8~\pm~8.3$	22
5			[500,750]	G05	3.02 ± 0.37	< 0.01	14.5 ± 6.5	17
	[450,650]	0.75	[750, 1250]	G06	$1.40~\pm~0.25$	$0.04~\pm~0.02$	$12.1~\pm~4.7$	10
			≥ 1250	G07	$0.08~\pm~0.06$	0.25 ± 0.04	$4.2~\pm~1.7$	2
			[500,750]	G08	0.74 ± 0.18	0.01 ± 0.01	2.3 ± 1.5	5
	≥650	0.5	[750, 1250]	G09	$0.49~\pm~0.15$	$0.12~\pm~0.03$	$5.8~\pm~2.0$	6
			≥ 1250	G10	$0.14~\pm~0.07$	1.15 ± 0.08	$2.7~\pm~1.3$	0
	[250, 250]	1.0	[500, 1000]	H01	3.02 ± 0.36	< 0.01	89 ± 38	85
	[230,330]	1.0	≥ 1000	H02	$0.31~\pm~0.10$	0.09 ± 0.02	$30.9~\pm~5.1$	33
	[350, 450]	10	[500, 1000]	H03	4.13 ± 0.41	0.01 ± 0.01	19 ± 11	31
	[550,450]	1.0	≥ 1000	H04	$0.52~\pm~0.14$	$0.14~\pm~0.03$	$9.5~\pm~2.3$	8
[6,7]			[500,750]	H05	3.63 ± 0.39	< 0.01	5.7 ± 3.3	13
	[450,650]	0.75	[750, 1250]	H06	3.79 ± 0.39	$0.03~\pm~0.01$	8.2 ± 3.2	8
			≥ 1250	H07	$0.36~\pm~0.12$	$0.47~\pm~0.05$	$3.6~\pm~1.8$	4
			[500,750]	H08	0.89 ± 0.19	< 0.01	$0.79~\pm~0.53$	3
	≥ 650	0.5	[750, 1250]	H09	1.77 ± 0.26	$0.15~\pm~0.03$	3.6 ± 1.4	5
			≥ 1250	H10	$0.83~\pm~0.18$	$2.83~\pm~0.12$	$1.83~\pm~0.86$	1
	[250, 350]	10	[500, 1000]	I01	$0.88~\pm~0.18$	< 0.01	$7.0~\pm~2.8$	16
	[200,000]	1.0	≥ 1000	I02	$0.26~\pm~0.09$	$0.03~\pm~0.01$	6.3 ± 1.2	4
	[350,450]	10	[500, 1000]	I03	0.55 ± 0.14	< 0.01	$1.67~\pm~0.77$	3
≥ 8	[550,450]	1.0	≥ 1000	I04	$0.72~\pm~0.15$	$0.11~\pm~0.02$	$2.65~\pm~0.89$	4
	[450,650]	0.75	[500, 1250]	105	$2.07~\pm~0.26$	$0.01~\pm~0.01$	$0.63~\pm~0.32$	0
	[450,050]	0.75	≥ 1250	I06	$0.45~\pm~0.12$	0.3 ± 0.04	$0.68~\pm~0.35$	1
	>650	0.5	[500, 1250]	107	$0.97~\pm~0.18$	$0.04~\pm~0.01$	$0.27~\pm~0.23$	1
		0.5	≥ 1250	108	$1.12~\pm~0.18$	1.37 ± 0.08	$0.38~\pm~0.24$	1

UCSB

 $1L M_J$

21

$\mathcal{L}=35.9~\mathrm{fb}^{-1}$	T1tttt	T5tttt	T1tttt	T5tttt
	(1800,100)	(1800,100)	(1400,1000)	(1400,1000)
1ℓ , $S_T > 500$ GeV, $p_T^{\text{miss}} > 200$ GeV	30.9	27.7	92.4	97.7
Track veto	28.4	23.7	80.0	86.5
$N_{ m jets} \ge 6$	25.0	21.0	74.4	80.9
$N_{\rm b} \ge 1$	23.6	19.8	70.6	77.4
$M_I > 250 \text{ GeV}$	23.6	19.8	65.9	73.6
$m_T > 140 \text{ GeV}$	19.2	11.6	39.3	43.1
$M_I > 400 \text{ GeV}$	18.9	11.5	25.0	28.1
$N_{ m b} \ge 2$	14.2	8.9	18.7	21.9
$p_{\rm T}^{\rm miss} > 350 { m ~GeV}$	12.5	5.8	9.1	11.1
$p_{\rm T}^{\rm miss} > 500 {\rm GeV}$	9.9	3.1	3.8	5.1
$N_{jets} \ge 9$	3.8	1.2	2.6	3.4

Cutflow

 $1L M_J$

Four aggregate search bins

p _T ^{miss} [GeV]	Njets	N _b	NC	С	к	Pred.	Obs.
>200	≥ 9	≥ 3	3.4	6.9	1.4 ± 0.3	3.1 ± 0.8	2
>350	≥ 9	≥ 2	5.3	6.2	1.0 ± 0.4	2.7 ± 1.2	2
>500	≥ 6	≥ 3	5.4	2.1	1.7 ± 0.6	0.5 ± 0.4	1
>500	≥ 9	≥ 1	5.1	3.6	1.2 ± 0.4	0.4 ± 0.4	2

18 bins of signal region R4

Njets	Nb	NC	С	К	Pred.	Obs.
		200	0 < p	$T_{ m T}^{ m miss} \leq 350$ C	GeV	
6-8	1	0.4	1.9	1.2 ± 0.2	85 ± 14	106
6-8	2	0.6	3.0	1.2 ± 0.2	55.1 ± 9.3	75
6-8	≥ 3	0.6	2.2	1.5 ± 0.2	16.4 ± 3.0	16
≥ 9	1	0.2	1.6	1.0 ± 0.2	6.5 ± 1.5	11
≥ 9	2	0.3	2.1	1.2 ± 0.3	7.6 ± 1.9	11
≥ 9	≥ 3	0.4	3.1	1.4 ± 0.3	2.3 ± 0.7	2
		350	0 < p	$T_{\rm T}^{\rm miss} \leq 500$ C	GeV	
6-8	1	0.7	1.1	1.0 ± 0.3	17.4 ± 6.6	25
6-8	2	0.9	1.3	1.1 ± 0.4	13.7 ± 5.3	10
6-8	≥ 3	0.8	0.9	1.3 ± 0.4	3.8 ± 1.6	1
≥ 9	1	0.3	1.0	1.1 ± 0.4	1.3 ± 0.6	2
≥ 9	2	0.5	1.1	0.8 ± 0.3	1.6 ± 0.8	2
≥ 9	≥ 3	0.7	2.1	1.2 ± 0.5	0.6 ± 0.4	0
			$p_{\rm T}^{\rm miss}$	$> 500 \mathrm{GeV}$	r	
6-8	1	2.5	0.6	1.0 ± 0.3	1.9 ± 1.5	8
6-8	2	3.6	1.0	1.0 ± 0.4	0.9 ± 0.7	4
6-8	≥ 3	3.2	0.4	1.5 ± 0.6	0.4 ± 0.4	1
≥ 9	1	1.0	0.7	1.0 ± 0.4	0.2 ± 0.2	2
≥ 9	2	1.8	1.2	1.0 ± 0.4	0.1 ± 0.1	0
≥ 9	≥ 3	2.3	1.7	3.1 ± 1.5	0.1 ± 0.1	0

Observed 95% CL limit Expected 95% CL limit Expected ± 1 s.d. 10² Expected ± 2 s.d. $\sigma^{\text{NLO+NLL}}$ (pp $\rightarrow \widetilde{g}\widetilde{g}, \widetilde{g} \rightarrow \text{tbs}$) 10 1000 1200 1400 1600 1800 2000 m_a [GeV]

1L M_J (RPV)

UCSB

16

14

12

Nb	QCD	tī	W+jets	Other	All bkg.	Data	Expected $m_{\tilde{g}} = 1600 \text{GeV}$		
	I		$4 \leq$	$N_{\rm jet} \leq 5$	$5, 500 < M_{\rm J} \le$	800 GeV	1		
1	148	340	196	91	775 ± 43	777	0.50 ± 0.13		
2	29	175	30	31	264 ± 17	264	0.39 ± 0.11		
3	4.3	24.8	2.5	4.4	36 ± 4	34	0.18 ± 0.08		
≥ 4	0.0	2.2	0.3	0.2	2.7 ± 0.4	3	0.04 ± 0.04		
	$4 \le N_{\rm iet} \le 5, \ M_{\rm I} > 800 {\rm GeV}$								
1	16.5	26.3	22.5	11.0	76 ± 6	77	0.32 ± 0.11		
2	1.1	10.6	3.4	3.8	19 ± 2	18	0.40 ± 0.12		
3	0.7	1.3	0.3	0.3	2.7 ± 0.5	3	0.13 ± 0.06		
≥ 4	0.00	0.09	0.03	0.01	0.13 ± 0.03	0	0.03 ± 0.03		
			$6 \leq$	$N_{\rm jet} \leq 7$	7, 500 $< M_{\rm J} \le$	800 GeV	1		
1	197	620	169	120	1106 ± 48	1105	2.5 ± 0.3		
2	49	440	36	66	591 ± 21	588	3.1 ± 0.3		
3	6.4	89.2	4.6	13.4	114 ± 8	112	1.4 ± 0.2		
≥ 4	1.9	11.4	0.6	2.1	16 ± 2	21	0.25 ± 0.09		
			N	$t_{\text{jet}} \geq 8$, ξ	$500 < M_{\rm J} \le 80$	0 GeV			
1	130	574	53	68	825 ± 38	821	3.5 ± 0.3		
2	45	478	14	49	586 ± 20	603	5.4 ± 0.4		
3	6.3	138.1	2.5	16.7	164 ± 9	148	3.0 ± 0.3		
≥ 4	2.8	29.8	0.4	4.8	38 ± 4	40	1.4 ± 0.2		
	I		$6 \leq$	$N_{\rm jet} \leq 7$	$M_{\rm J} \leq M_{\rm J} \leq 1$	1000 Ge	V		
1	17.3	48.4	19.2	12.3	97 ± 8	105	1.2 ± 0.2		
2	6.6	30.1	4.3	7.3	48 ± 4	37	2.0 ± 0.3		
3	0.8	6.6	0.5	1.3	9.3 ± 1.0	12	1.0 ± 0.2		
≥ 4	0.0	0.9	0.1	0.2	1.1 ± 0.2	2	0.31 ± 0.09		
			Nj	$et \ge 8, 8$	$M_{\rm J} \leq 10$	00 GeV			
1	17.0	58.7	10.3	10.2	96 ± 8	90	4.2 ± 0.4		
2	5.8	47.5	2.5	6.8	63 ± 5	65	5.3 ± 0.4		
3	1.1	15.0	0.4	2.0	19 ± 2	22	2.6 ± 0.3		
≥ 4	0.2	3.4	0.1	0.9	4.6 ± 0.6	5	1.3 ± 0.2		
			6	$\leq N_{\rm jet}$	\leq 7, $M_{\rm J}$ > 100	0 GeV			
1	4.4	8.7	6.0	4.1	23 ± 2	21	2.0 ± 0.3		
2	0.7	5.0	1.4	1.6	8.8 ± 1.2	11	2.3 ± 0.3		
3	0.1	1.2	0.2	0.5	1.9 ± 0.3	2	1.0 ± 0.2		
≥ 4	0.00	0.13	0.01	0.05	0.19 ± 0.04	0	0.23 ± 0.08		
				$N_{\rm jet} \ge 1$	8, $M_{\rm J} > 1000$ C	GeV			
1	6.4	16.7	3.5	4.1	31 ± 3	28	5.4 ± 0.4		
2	1.6	13.1	1.1	2.1	18 ± 2	21	8.2 ± 0.5		
3	0.6	4.2	0.2	1.0	6.0 ± 0.8	5	5.7 ± 0.4		
≥ 4	0.0	1.2	0.0	0.2	1.4 ± 0.3	2	3.2 ± 0.3		

cutflow

$\mathcal{L} = 35.9 \text{ fb}^{-1}$	QCD	tĪ	W+jets	Other	All bkg.	$m_{\widetilde{g}} = 1600 \text{ GeV}$
$H_{\rm T} > 1200~{\rm GeV}$	1.615×10^7	$9.76 imes10^4$	$2.718 imes 10^5$	$2.965 imes 10^4$	$(1.655 \pm 0.007) \times 10^{7}$	$2.8 imes 10^2$
$N_{\text{lep}} = 1$	$1.11 imes 10^4$	$1.292 imes 10^4$	$2.502 imes 10^4$	$4.48 imes 10^3$	$(5.35 \pm 0.01) \times 10^4$	$7.9 imes10^1$
$N_{\rm b} \ge 1$	3240	10340	4990	2150	20725±80	74
$N_{\rm jet} \ge 4$	2770	9920	3740	1870	18304 ± 70	74
$\dot{M}_{\rm J} > 500~{\rm GeV}$	810	3658	1120	574	6162±40	67
$M_{\rm J} > 800 {\rm GeV}$	99	360	150	75	685±9	47
$N_{\rm jet} \ge 8$	38	200	42	29	309±7	36
$M_{\rm J} > 1000 {\rm GeV}$	11	43.0	11.3	7.9	73±2	22.6
$N_{\rm b} \ge 3$	0.7	6.2	0.5	1.1	8.5±0.6	8.9
	QCD	$t\bar{t}$	W+jets	Other	All bkg.	$m_{\widetilde{g}} = 1600 \text{ GeV}$

systematics

CMS 35.9 fb ⁻¹ (13 TeV) 20							CMS		35.9 fb ⁻	¹ (13 Te	V)	
MC sample size	3.4	3.4	7.5	8.7	20	y [%]	MC sample size	7.3	6.0	7.1	9.2	
Gluon splitting	2.4	1.3	6.7	14.7	-18	taint	Gluon splitting	0.3	0.1	0.4	1.2	
b,c jet b-tag SF	- 1.3	0.8	3.8	6.0	-16	Incer	b,c jet b-tag SF	4.3	0.3	3.1	6.7	-
u.d.s.g jet b-tag SF		0.4	3.5	5.7	-14	ر	u,d,s,g jet b-tag SF	1.0	0.6	0.4	2.1	_
PDF	0.3	0.4	0.7	1.5	-12		PDF	5.7	4.0	6.2	7.2	
Lenten efficiency	-				10		Lepton efficiency	2.6	2.7	2.9	2.8	
Lepton eniciency	0.1	0.3	0.2	0.1	-10		Jet energy resolution	0.5	0.1	0.2	1.0	
Jet energy resolution	0.5	0.4	1.5	0.6	-8		Jet energy scale	2.5	1.4	3.8	4.4	-
Jet energy scale	1.0	2.0	1.0	5.5	-6		Renorm. and fact. scale	0.7	0.8	0.6	0.7	_
Renorm. and fact. scale	0.2	0.4	0.5	2.3	-4		Factorization scale	 0.8	0.8	0.6	0.7	_
Factorization scale	0.2	0.3	0.2	0.8	-2		Renormalization scale	0.1	0.1	0.1	0.1	_
Renormalization scale	0.1	0.1	0.5	1.4	-		Initial state radiation	5.2	3.5	2.6	5.1	
	1	2	3	≥ 4 N	-0			1	2	3	≥ 4 N	
background								S	sig	na		

Strong-production on-Z (86 $< m_{\ell\ell} <$ 96 GeV) signal regions							
Region	Njets	N _{b-jets}	$H_{\rm T}$ [GeV]	$M_{\text{T2}}(\ell\ell)$ [GeV]	<i>p</i> ^{miss} _T binning [GeV]		
SRA b veto	2–3	=0	>500	>80	100–150, 150–250, >250		
SRB b veto	4–5	=0	>500	>80	100–150, 150–250, >250		
SRC b veto	≥ 6	=0	—	>80	100–150, >150		
SRA b tag	2–3	≥ 1	>200	>100	100–150, 150–250, >250		
SRB b tag	4–5	≥ 1	>200	>100	100–150, 150–250, >250		
SRC b tag	≥ 6	≥ 1	—	>100	100–150, >150		
		Electroweak	-production on-Z (8	$36 < m_{\ell\ell} < 96 \text{GeV}$	signal regions		
Region	Njets	N _{b-jets}	Dijet mass [GeV]	<i>M</i> _{T2} [GeV]	p _T ^{miss} binning [GeV]		
VZ	≥ 2	=0	<i>m</i> _{jj} < 110	$M_{\text{T2}}(\ell\ell) > 80$	100–150, 150–250, 250–350, >350		
HZ	≥ 2	=2	$m_{\rm bb} < 150$	$M_{\rm T2}(\ell b \ell b) > 200$	100–150, 150–250, >250		
			Edge sig	nal regions			
Region	Njets	$p_{\rm T}^{\rm miss}$ [GeV]	$M_{T2}(\ell\ell)$ [GeV]	tī likelihood	$m_{\ell\ell}$ binning [GeV]		
Edge fit	≥2	>150	>80	—	>20		
tī-like	≥2	>150	>80	<21	20–60, 60–86, 96–150, 150–200, 200–300, 300–400, >400		
not-t ī -like	>2	>150	>80	>21	same as tī-like		

	SRA, b veto	$p_{\rm T}^{\rm miss}$ [GeV]	100-150	150-250	>250
		DY+jets	13.6±3.1	2.5 ± 0.9	3.3±2.4
		FS	$0.4\substack{+0.3\\-0.2}$	$0.2\substack{+0.2 \\ -0.1}$	$0.2\substack{+0.2\-0.1}$
		$Z+\nu$	$0.8{\pm}0.3$	$1.4{\pm}0.4$	$2.4{\pm}0.8$
		Total background	14.8 ± 3.2	$4.0{\pm}1.0$	$5.9{\pm}2.5$
		Data	23	5	4
	SRA, b tag	$p_{\rm T}^{\rm miss}$ [GeV]	100-150	150-250	>250
		DY+jets	$8.2{\pm}2.1$	1.2 ± 0.5	0.5 ± 0.3
		FS	2.3 ± 0.8	$1.7^{+0.7}_{-0.6}$	$0.1^{+0.2}_{-0.1}$
		$Z+\nu$	$1.9{\pm}0.4$	2.0 ± 0.5	$1.8 {\pm} 0.6$
on 7		Total background	12.4 ± 2.3	4.9 ± 1.0	2.5 ± 0.7
011-2		Data	14	7	1
_	SRB, b veto	$p_{\rm T}^{\rm miss}$ [GeV]	100-150	150-250	>250
strona		DY+jets	12.8 ± 2.3	0.9 ± 0.3	0.4 ± 0.2
Strong		FS	$0.4^{+0.3}_{-0.2}$	$0.4^{+0.3}_{-0.2}$	$0.1^{+0.2}_{-0.1}$
production		Z+ν	0.3 ± 0.1	0.7 ± 0.2	1.2 ± 0.4
production		Total background	13.6 ± 2.4	2.0 ± 0.5	1.6 ± 0.4
•	CDD 1 (Data	100, 150	4	0
regions	SRB, b tag	p _T ^{muss} [GeV]	100-150	150-250	>250
regions		D I +jets	1.1 ± 3.2	4.0±3.4 1 1+0.5	0.1 ± 0.1
		F5 7 Lat	$1.4_{-0.5}$	$1.1_{-0.4}$	$0.2_{-0.1}^{+0.2}$
		L+V Total background	2.0 ± 0.3	∠.5±0.0 7 4+3.5	1.0 ± 0.3 1 2+0.4
		Total background	11.1±3.3	7.4-3.4	$1.3_{-0.3}$
	SPC hypto	n ^{miss} [CoV]	10 150	5 \	0
	SKC, D veto	$p_{\rm T}$ [Gev]	100-150 1 2 ± 0.4	>130	
		FS	$0.4^{\pm 0.4}$	0.1 ± 0.1 0.1 ±0.1	
		7-1/	0.4 - 0.2 0 1 + 0 1	$0.1_{-0.1}$ 0.5+0.2	
		Total background	17+0.1	0.5 ± 0.2 $0.7^{+0.3}$	
		Data	4	0.7 -0.2	
	SRC, b tag	n ^{miss} [GeV]	100-150	>150	
	511C, 0 mg	DY+iets	0.1+0.4	0.0+0.3	
		FS	$0.0^{+0.1}$	0.3 ± 0.2	
		$Z+\nu$	0.6 ± 0.2	0.6 ± 0.2	
		Total background	0.8 ± 0.5	$0.9^{+0.5}$	
		Data	2	2	

typical signal uncertainties

Source of uncertainty	Uncertainty (%)
Integrated luminosity	2.5
Lepton reconstruction and isolation	5
Fast simulation lepton efficiency	4
b tag modeling	0–5
Trigger modeling	3
Jet energy scale	0–5
ISR modeling	0–2.5
Pileup	1–2
Fast simulation $p_{\rm T}^{\rm miss}$ modeling	0–4
Renorm./fact. scales	1–3
Statistical uncertainty	1–15
Total uncertainty	9–18

SRA			
Gluino GMSB model, gluino mass: 1400 GeV, $\tilde{\chi}_1^0$ mass: 700 GeV	Events in	35.9 fb ⁻¹	
Expected events	174	4.14	
> 2 Leptons ($e^{\pm} e^{\mp}$ or $\mu^{\pm}\mu^{\mp}$) with (sub)leading $p_T > 25(20)$ GeV	65	.24	
Extra lepton vetos	57.81		
Dilepton mass \in Z mass window (86.96) GeV	44	.86	
2-3 lets	1.	88	
$\Delta \Phi$ between MET and two highest p_T jets > 0.4 rad	1.	54	
Btag requirement	B Veto	> 1 Btag	
0 1	1.14	0.40	
$M_{T2}(\ell\ell) >$	80 GeV	100 GeV	
	0.36	0.34	
$H_T >$	500 GeV	200 GeV	
·	0.36	0.34	
$E_T^{miss} > 100 \text{ GeV}$	0.36	0.34	
$E_T^{miss} > 150 \text{ GeV}$	0.36	0.34	
$E_T^{niss} > 250 \text{ GeV}$	0.29	0.29	
SRB	I	1	
Gluino GMSB model, gluino mass: 1400 GeV, $\tilde{\chi}_1^0$ mass: 700 GeV	Events in	35.9 fb ⁻¹	
Expected events	174	4.14	
> 2 Leptons ($e^{\pm} e^{\mp}$ or $\mu^{\pm}\mu^{\mp}$) with (sub)leading $p_T > 25(20)$ GeV	65	.24	
Extra lepton vetos	57	.81	
Dilepton mass \in Z mass window (86,96) GeV	44.86		
4-5 Jets	15.32		
$\Delta \Phi$ hot was a MET and two high act n ists > 0.4 and	13.02		
$\Delta \Psi$ between ME1 and two highest p_T jets > 0.4 rad	13	.02	
Btag requirement	B Veto	202 ≥ 1 Btag	
Btag requirement	B Veto 6.46	$ \begin{array}{r} .02 \\ \geq 1 \text{ Btag} \\ \hline 6.56 \end{array} $	
$\frac{\Delta \Phi \text{ between MET and two highest } p_T \text{ jets } > 0.4 \text{ rad}}{\text{Btag requirement}}$	B Veto 6.46 80 GeV	.02 ≥ 1 Btag 6.56 100 GeV	
$\frac{\Delta \Phi \text{ between MET and two highest } p_T \text{ Jets } > 0.4 \text{ rad}}{\text{Btag requirement}}$	B Veto 6.46 80 GeV 5.86	.02 ≥ 1 Btag 6.56 100 GeV 5.66	
$\frac{M\Phi \text{ between MET and two highest } p_T \text{ jets } > 0.4 \text{ rad}}{\text{Btag requirement}}$ $\frac{M_{T2}(\ell\ell) >}{H_T >}$	B Veto 6.46 80 GeV 5.86 500 GeV	.02 ≥ 1 Btag 6.56 100 GeV 5.66 200 GeV	
$\begin{tabular}{l c c c c c c c c c c c c c c c c c c c$	B Veto 6.46 80 GeV 5.86 500 GeV 5.83	.02 ≥ 1 Btag 6.56 100 GeV 5.66 200 GeV 5.66	
$\frac{140 \text{ between MET and two highest } p_T \text{ jets } > 0.4 \text{ rad}}{\text{Btag requirement}}$ $\frac{M_{T2}(\ell\ell) > }{H_T > }$ $\frac{E_{T_*}^{miss} > 100 \text{ GeV}}{}$	B Veto 6.46 80 GeV 5.86 500 GeV 5.83 5.69	.02 ≥ 1 Btag 6.56 100 GeV 5.66 200 GeV 5.66 5.54	
$\frac{L\Phi \text{ between MET and two highest } p_T \text{ jets } > 0.4 \text{ rad}}{\text{Btag requirement}}$ $\frac{M_{T2}(\ell\ell) >}{H_T >}$ $\frac{E_T^{miss} > 100 \text{ GeV}}{E_T^{miss} > 150 \text{ GeV}}$	B Veto 6.46 80 GeV 5.86 500 GeV 5.83 5.69 5.54	.02 ≥ 1 Btag 6.56 100 GeV 5.66 200 GeV 5.66 5.54 5.41	
$\frac{IA\Phi \text{ between MET and two highest } p_T \text{ jets } > 0.4 \text{ rad}}{\text{Btag requirement}}$ $\frac{M_{T2}(\ell\ell) >}{H_T >}$ $\frac{E_T^{miss} > 100 \text{ GeV}}{E_T^{miss} > 150 \text{ GeV}}$ $E_T^{miss} > 250 \text{ GeV}$	B Veto 6.46 80 GeV 5.86 500 GeV 5.83 5.69 5.54 5.00	.02 ≥ 1 Btag 6.56 100 GeV 5.66 200 GeV 5.66 5.54 5.41 4.89	
$\begin{tabular}{l c c c c c c c c c c c c c c c c c c c$	B Veto 6.46 80 GeV 5.86 500 GeV 5.83 5.69 5.54 5.00	.02 ≥ 1 Btag 6.56 100 GeV 5.66 200 GeV 5.66 5.54 5.41 4.89	
$\begin{array}{r} \hline \hline \textbf{Btag requirement} \\ \hline \hline \textbf{Btag requirement} \\ \hline \hline \textbf{M}_{T2}(\ell\ell) > \\ \hline \textbf{H}_{T} > \\ \hline \hline \textbf{E}_{T}^{miss} > 100 \text{ GeV} \\ \hline \textbf{E}_{T}^{miss} > 150 \text{ GeV} \\ \hline \textbf{E}_{T}^{miss} > 250 \text{ GeV} \\ \hline \hline \textbf{SRC} \\ \hline \hline \textbf{Gluino GMSB model, gluino mass: 1400 GeV, \tilde{\chi}_{1}^{0} \text{ mass: 700 GeV} \end{array}$	B Veto 6.46 80 GeV 5.86 500 GeV 5.83 5.69 5.54 5.00 Events in 1000	$\begin{array}{r} .02 \\ \geq 1 \ \text{Btag} \\ 6.56 \\ \hline 100 \ \text{GeV} \\ 5.66 \\ \hline 200 \ \text{GeV} \\ \hline 5.66 \\ \hline 5.54 \\ 5.41 \\ 4.89 \\ \hline 35.9 \ \text{fb}^{-1} \end{array}$	
$\begin{array}{r} \hline \begin{array}{c} \hline \\ \hline $	13 B Veto 6.46 80 GeV 5.86 500 GeV 5.83 5.69 5.54 5.00 Events in 17	$\begin{array}{r} .02 \\ \geq 1 \ \text{Btag} \\ 6.56 \\ \hline 100 \ \text{GeV} \\ 5.66 \\ \hline 200 \ \text{GeV} \\ 5.66 \\ \hline 5.54 \\ 5.41 \\ 4.89 \\ \hline 35.9 \ \text{fb}^{-1} \\ 4.14 \end{array}$	
$\begin{array}{r} \hline \begin{array}{c} \hline \\ \hline $	13 B Veto 6.46 80 GeV 5.86 500 GeV 5.83 5.69 5.54 5.00 Events in 17 65	$\begin{array}{r} .02 \\ \geq 1 \ \text{Btag} \\ 6.56 \\ \hline 100 \ \text{GeV} \\ 5.66 \\ \hline 200 \ \text{GeV} \\ 5.66 \\ \hline 5.54 \\ 5.41 \\ 4.89 \\ \hline 35.9 \ \text{fb}^{-1} \\ 4.14 \\ 5.24 \end{array}$	
$\begin{array}{r} \hline \begin{array}{c} \hline \\ \hline $	B Veto 6.46 80 GeV 5.86 500 GeV 5.83 5.69 5.54 5.00 Events in 17 65 57	$\begin{array}{r} .02 \\ \geq 1 \ \text{Btag} \\ 6.56 \\ \hline 100 \ \text{GeV} \\ 5.66 \\ \hline 200 \ \text{GeV} \\ \hline 5.66 \\ \hline 5.54 \\ 5.41 \\ 4.89 \\ \hline 35.9 \ \text{fb}^{-1} \\ 4.14 \\ 5.24 \\ 7.81 \end{array}$	
$\begin{array}{r} \hline \begin{array}{c} \hline \\ \hline $	B Veto 6.46 80 GeV 5.86 500 GeV 5.83 5.69 5.54 5.00 Events in 17 65 57 44	$\begin{array}{r} .02 \\ \geq 1 \ \text{Btag} \\ 6.56 \\ \hline 100 \ \text{GeV} \\ 5.66 \\ \hline 200 \ \text{GeV} \\ 5.66 \\ \hline 5.54 \\ 5.41 \\ 4.89 \\ \hline 35.9 \ \text{fb}^{-1} \\ 4.14 \\ \hline 5.24 \\ 7.81 \\ 4.86 \end{array}$	
$\begin{array}{r} \hline \begin{array}{c} \hline \\ \hline $	B Veto 6.46 80 GeV 5.86 500 GeV 5.83 5.69 5.54 5.00 Events in 17 65 57 44 27	$\begin{array}{r} .02 \\ \geq 1 \ \text{Btag} \\ 6.56 \\ \hline 100 \ \text{GeV} \\ 5.66 \\ \hline 200 \ \text{GeV} \\ \hline 5.66 \\ \hline 5.54 \\ 5.41 \\ 4.89 \\ \hline 35.9 \ \text{fb}^{-1} \\ 4.14 \\ \hline 5.24 \\ 7.81 \\ 4.86 \\ 7.67 \end{array}$	
$\begin{array}{r} \hline \textbf{Btag requirement} \\ \hline \textbf{Btag requirement} \\ \hline \textbf{M}_{T2}(\ell\ell) > \\ \hline \textbf{H}_{T} > \\ \hline \textbf{H}_{T} > \\ \hline \textbf{E}_{T}^{miss} > 100 \text{ GeV} \\ \hline \textbf{E}_{T}^{miss} > 150 \text{ GeV} \\ \hline \textbf{E}_{T}^{miss} > 250 \text{ GeV} \\ \hline \textbf{SRC} \\ \hline \textbf{Gluino GMSB model, gluino mass: 1400 GeV, $\tilde{\chi}_{1}^{0}$ mass: 700 GeV} \\ \hline \textbf{Expected events} \\ \geq 2 \text{ Leptons } (e^{\pm} e^{\mp} \text{ or } \mu^{\pm}\mu^{\mp}) \text{ with (sub)leading } \textbf{p}_{T} > 25(20) \text{ GeV} \\ \hline \textbf{Extra lepton vetos} \\ \hline \textbf{Dilepton mass} \in Z \text{ mass window (86,96) GeV} \\ \geq 6 \text{ Jets} \\ \Delta \Phi \text{ between MET and two highest } \textbf{p}_{T} \text{ jets} > 0.4 \text{ rad} \\ \hline \end{array}$	B Veto 6.46 80 GeV 5.86 500 GeV 5.83 5.69 5.54 5.00 Events in 17 65 57 44 27 23	$\begin{array}{r} .02 \\ \geq 1 \ Btag \\ 6.56 \\ \hline 100 \ GeV \\ 5.66 \\ \hline 200 \ GeV \\ \hline 5.66 \\ \hline 5.54 \\ 5.41 \\ 4.89 \\ \hline 35.9 \ fb^{-1} \\ 4.14 \\ \hline 5.24 \\ 7.81 \\ 4.86 \\ 7.67 \\ \hline 5.24 \\ \hline \end{array}$	
$\begin{array}{r} \hline \textbf{Btag requirement}\\\hline \textbf{M}_{T2}(\ell\ell) > \\\hline \textbf{M}_{T2}(\ell\ell) > \\\hline \textbf{H}_{T} > \\\hline \textbf{H}_{T} > \\\hline \textbf{H}_{T} > \\\hline \textbf{H}_{T} > \\\hline \textbf{SRC}\\\hline \textbf{Gluino GMSB model, gluino mass: 1400 GeV, \tilde{\chi}_{1}^{0} mass: 700 GeV \\\hline \textbf{Expected events}\\ \geq 2 \text{ Leptons } (e^{\pm} e^{\mp} \text{ or } \mu^{\pm}\mu^{\mp}) \text{ with (sub)leading } p_{T} > 25(20) \text{ GeV}\\\hline \textbf{Extra lepton vetos}\\\hline \textbf{Dilepton mass} \in Z \text{ mass window (86,96) GeV}\\ \geq 6 \text{ Jets}\\\hline \Delta\Phi \text{ between MET and two highest } p_{T} \text{ jets} > 0.4 \text{ rad}\\\hline \textbf{Btag requirement}\\\hline \end{array}$	B Veto 6.46 80 GeV 5.86 500 GeV 5.83 5.69 5.54 5.00 Events in 17 65 57 44 27 23 B Veto	$\begin{array}{r} .02 \\ \ge 1 \ \text{Btag} \\ 6.56 \\ \hline 100 \ \text{GeV} \\ 5.66 \\ \hline 200 \ \text{GeV} \\ \hline 5.66 \\ \hline 5.54 \\ 5.41 \\ 4.89 \\ \hline 35.9 \ \text{fb}^{-1} \\ 4.14 \\ 5.24 \\ \hline 7.81 \\ 4.86 \\ 7.67 \\ \hline 3.24 \\ \ge 1 \ \text{Btag} \end{array}$	
$\begin{array}{r} \hline \textbf{Btag requirement} \\ \hline \textbf{Btag requirement} \\ \hline \textbf{M}_{T2}(\ell\ell) > \\ \hline \textbf{H}_{T} > \\ \hline \textbf{H}_{T} > \\ \hline \textbf{H}_{T} > \\ \hline \textbf{E}_{T}^{miss} > 150 \text{ GeV} \\ \hline \textbf{E}_{T}^{miss} > 250 \text{ GeV} \\ \hline \textbf{SRC} \\ \hline \textbf{Gluino GMSB model, gluino mass: 1400 GeV, \tilde{\chi}_{1}^{0} \text{ mass: 700 GeV} \\ \hline \textbf{Expected events} \\ \geq 2 \text{ Leptons } (e^{\pm} e^{\mp} \text{ or } \mu^{\pm}\mu^{\mp}) \text{ with (sub)leading } p_{T} > 25(20) \text{ GeV} \\ \hline \textbf{Extra lepton vetos} \\ \hline \textbf{Dilepton mass} \in Z \text{ mass window (86,96) GeV} \\ \geq 6 \text{ Jets} \\ \hline \Delta \Phi \text{ between MET and two highest } p_{T} \text{ jets } > 0.4 \text{ rad} \\ \hline \textbf{Btag requirement} \\ \hline \end{array}$	B Veto 6.46 80 GeV 5.86 500 GeV 5.83 5.69 5.54 5.00 Events in 17 65 57 44 27 23 B Veto 10.31	$\begin{array}{r} .02 \\ \geq 1 \ \text{Btag} \\ 6.56 \\ \hline 100 \ \text{GeV} \\ 5.66 \\ \hline 200 \ \text{GeV} \\ 5.66 \\ \hline 5.54 \\ 5.41 \\ 4.89 \\ \hline 35.9 \ \text{fb}^{-1} \\ 4.14 \\ 5.24 \\ 7.81 \\ 4.86 \\ 7.67 \\ 3.24 \\ \geq 1 \ \text{Btag} \\ 12.93 \end{array}$	
$\begin{array}{r} \hline \textbf{Btag requirement} \\ \hline \textbf{Btag requirement} \\ \hline \textbf{M}_{T2}(\ell\ell) > \\ \hline \textbf{H}_{T} > \\ \hline \textbf{H}_{T} > \\ \hline \textbf{E}_{T}^{miss} > 100 \text{ GeV} \\ \textbf{E}_{T}^{miss} > 150 \text{ GeV} \\ \textbf{E}_{T}^{miss} > 250 \text{ GeV} \\ \hline \textbf{SRC} \\ \hline \textbf{Gluino GMSB model, gluino mass: 1400 GeV, $\tilde{\chi}_{1}^{0}$ mass: 700 GeV} \\ \hline \textbf{Expected events} \\ \geq 2 \text{ Leptons } (e^{\pm} e^{\mp} \text{ or } \mu^{\pm} \mu^{\mp}) \text{ with (sub)leading } p_{T} > 25(20) \text{ GeV} \\ \hline \textbf{Extra lepton vetos} \\ \hline \textbf{Dilepton mass} \in Z$ mass window (86,96) GeV \\ \geq 6 \text{ Jets} \\ \hline \Delta \Phi$ between MET and two highest } p_{T}$ jets > 0.4$ rad \\ \hline \textbf{Btag requirement} \\ \hline \hline \textbf{M}_{T2}(\ell\ell) > \\ \hline \end{array}$	B Veto 6.46 80 GeV 5.86 500 GeV 5.83 5.69 5.54 5.00 Events in 17 65 57 44 27 23 B Veto 10.31 80 GeV	$\begin{array}{r} .02 \\ \geq 1 \ Btag \\ 6.56 \\ \hline 100 \ GeV \\ 5.66 \\ \hline 200 \ GeV \\ \hline 5.66 \\ \hline 5.54 \\ 5.41 \\ 4.89 \\ \hline 35.9 \ fb^{-1} \\ 4.14 \\ \hline 5.24 \\ 7.81 \\ 8.86 \\ 7.67 \\ \hline 3.24 \\ \hline \geq 1 \ Btag \\ \hline 12.93 \\ \hline 100 \ GeV \end{array}$	
$\begin{array}{r} I \mbox{We ent MET and two highest } p_T \mbox{ jets } > 0.4 \mbox{ rad} \\ \hline \mbox{Btag requirement} \\ \hline \mbox{M}_{T2}(\ell\ell) > \\ \hline \mbox{H}_T > \\ \hline \mbox{H}_T > \\ \hline \mbox{H}_T > \\ \hline \mbox{E}_T^{miss} > 150 \mbox{ GeV} \\ \hline \mbox{E}_T^{miss} > 250 \mbox{ GeV} \\ \hline \mbox{E}_T^{miss} > 250 \mbox{ GeV} \\ \hline \mbox{SRC} \\ \hline \mbox{Gluino GMSB model, gluino mass: 1400 \mbox{ GeV}, $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$	B Veto 6.46 80 GeV 5.86 500 GeV 5.83 5.69 5.54 5.00 Events in 17 65 57 44 27 23 B Veto 10.31 80 GeV 11.12	$\begin{array}{r} .02 \\ \geq 1 \ Btag \\ 6.56 \\ \hline 100 \ GeV \\ 5.66 \\ \hline 200 \ GeV \\ \hline 5.66 \\ \hline 5.54 \\ 5.41 \\ 4.89 \\ \hline 35.9 \ fb^{-1} \\ 4.14 \\ \hline 5.24 \\ 7.81 \\ 4.86 \\ 7.67 \\ \hline 3.24 \\ \hline \geq 1 \ Btag \\ \hline 12.93 \\ \hline 100 \ GeV \\ \hline 10.60 \\ \hline \end{array}$	
$\begin{array}{r} I = 1 \\ \hline \textbf{Btag requirement} \\ \hline \textbf{M}_{T2}(\ell\ell) > \\ \hline \textbf{H}_{T} > \\ \hline \textbf{H}_{T} > \\ \hline \textbf{H}_{T} > \\ \hline \textbf{E}_{T}^{miss} > 150 \text{ GeV} \\ \textbf{E}_{T}^{miss} > 150 \text{ GeV} \\ \textbf{E}_{T}^{miss} > 250 \text{ GeV} \\ \hline \textbf{SRC} \\ \hline \textbf{Gluino GMSB model, gluino mass: 1400 GeV, } \tilde{\chi}_{1}^{0} \text{ mass: 700 GeV} \\ \hline \textbf{Expected events} \\ \geq 2 \text{ Leptons } (e^{\pm} e^{\mp} \text{ or } \mu^{\pm} \mu^{\mp}) \text{ with (sub)leading } \textbf{p}_{T} > 25(20) \text{ GeV} \\ \hline \textbf{Extra lepton vetos} \\ \hline \textbf{Dilepton mass} \in \mathbb{Z} \text{ mass window (86,96) GeV} \\ \geq 6 \text{ Jets} \\ \hline \Delta \Phi \text{ between MET and two highest } \textbf{p}_{T} \text{ jets } > 0.4 \text{ rad} \\ \hline \textbf{Btag requirement} \\ \hline \hline \textbf{M}_{T2}(\ell\ell) > \\ \hline \hline \textbf{E}_{T}^{miss} > 100 \text{ GeV} \end{array}$	B Veto 6.46 80 GeV 5.86 500 GeV 5.83 5.69 5.54 5.00 Events in 17 65 57 44 27 23 B Veto 10.31 80 GeV 11.12 10.87	$\begin{array}{r} .02 \\ & \geq 1 \ \text{Btag} \\ & 6.56 \\ \hline 100 \ \text{GeV} \\ & 5.66 \\ \hline 200 \ \text{GeV} \\ & 5.66 \\ \hline 5.54 \\ & 5.41 \\ & 4.89 \\ \hline \\ 135.9 \ \text{fb}^{-1} \\ & 4.14 \\ & 5.24 \\ \hline \\ & 7.81 \\ & 4.86 \\ & 7.67 \\ & 3.24 \\ & \geq 1 \ \text{Btag} \\ & 12.93 \\ \hline \\ & 100 \ \text{GeV} \\ & 10.60 \\ & 10.51 \\ \hline \end{array}$	

on-Z strong production cutflow

MultiLepton

LowMET (MET<50)

2L SS + ≥3L

SRHH/HighHigh, 62 bins

$ \begin{array}{ c c c c c } & \hline \ $	N _{b jets}	$M_{\rm T}^{\rm min}$ (GeV)	$E_{\rm T}^{\rm miss}$ (GeV)	Njets	$H_{\rm T} < 300 {\rm GeV}$	$H_{\rm T} \in [300, 1125] { m GeV}$	$H_{\rm T} \in [1125, 1300] {\rm GeV}$	$H_{\rm T} \in [1300, 1600] {\rm GeV}$	$H_{\rm T} > 1600{\rm GeV}$
$\begin{array}{ c c c c c c } & & & & & & & & & & & & & & & & & & &$			50 200	2-4	SR1	SR2			
$ \begin{array}{ c c c c c c } & \hline 100 & \hline 20 - 300 & \hline 2.4 \\ \hline 50 - 200 & \hline 2.4 \\ \hline 200 - 300 & \hline 2.4 \\ \hline 3R32 (+) / SR31 \\ \hline SR32 (+) / SR32 (-) \\ \hline SR32 (+) / SR31 \\ \hline SR32 (+) / SR31 (-) \\ \hline SR32 (+) / SR31 (-) \\ \hline SR32 (+) / SR31 (-) \\ \hline SR32 (+) / SR34 (-) \\ \hline SR34 (+) / SR34 (-) \\ \hline SR34 (+) / SR45 (-) \\ \hline SR42 (+) / SR47 (-$		< 120	30 - 200	5+		SR4			
$ \begin{array}{ c c c c c } \hline 1 & 20 & 30 & 5 \\ \hline 1 & 20 & 30 & 5 \\ \hline 1 & 5 & 5 \\ \hline 1 & 20 & 24 \\ \hline 1 & 20 & 30 & 24 \\ \hline 1 & 30 & 30 & 50 \\ \hline 1 & 30 & 30 & 50 \\ \hline 1 & 30 & 30 & 50 \\ \hline 1 & 30 & 50 & 24 \\ \hline 1 & 30 & 50 & 24 \\ \hline 1 & 30 & 50 & 24 \\ \hline 1 & 30 & 50 & 24 \\ \hline 1 & 30 & 50 & 24 \\ \hline 1 & 30 & 50 & 24 \\ \hline 1 & 30 & 50 & 24 \\ \hline 1 & 30 & 50 & 24 \\ \hline 1 & 30 & 50 & 24 \\ \hline 1 & 30 & 50 & 24 \\ \hline 1 & 30 & 50 & 24 \\ \hline 1 & 30 & 50 & 24 \\ \hline 1 & 30 & 50 & 24 \\ \hline 1 & 30 & 50 & 24 \\ \hline 1 & 30 & 50 & 24 \\ \hline 1 & 30 & 50 & 24 \\ \hline 1 & 30 & 50 & 24 \\ \hline 1 & 30 & 50 & 51 \\ \hline 1 & 1 & 30 & 50 \\ \hline 1 & 30 & 50 & 51 \\ \hline 1 & 1 & 1 & 30 \\ \hline 1 & 1 & $		< 120	200 - 300	2-4		SR5 (++) / SR6 ()			
$ \begin{array}{c c c c c c c } & & & & & & & & & & & & & & & & & & &$	0		200 300	5+		SR7			
	Ŭ		50 - 200	2-4	SR3	SR8 (++) / SR9 ()	SR54	SR55	SR56
		> 120		5+		0740	N _{jets} < 5	N _{jets} < 5	$N_{\rm jets} < 5$
$ \begin{array}{ c c c c } \hline c c c c c } \hline c c c c c c c c } \\ \hline c c c c c c c c c c c c c c c c c c $			200 - 300	2-4		SR10			
$ 1 \\ 1 \\ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $				5+	0011	0010			
$ \begin{array}{c c c c c c c c } & \hline & & & & & & & & & & & & & & & & & $			50 - 200	2-4	SKII	SKI2			
$ \frac{1}{1} + 1$		< 120		3+		SR15 (++) / SR16 ()			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			200 - 300	2-4		SR17 (++) / SR10 ()			
$\frac{50-200}{2} + \frac{51}{5} + \frac{50-200}{5} + \frac{24}{5} + \frac{50-200}{5} + \frac{50-200}{5} + \frac{50-200}{5} + \frac{50-200}{5} + \frac{50-200}{5} + \frac{24}{5} + \frac{50-200}{5} + \frac{50-20}{5} + \frac{50-20}{$	1			2-4	SR13 (++) / SR14 ()	SR20 (++) / SR21 ()	CP57	CP59	SP50
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			50 - 200	2- 4 5+	5K15 (++) / 5K14 ()	JK20 (++) / JK21 ()	$N_{\text{iets}} = 5 \text{ or } 6$	$N_{\text{iets}} = 5 \text{ or } 6$	$N_{\text{iots}} = 5 \text{ or } 6$
$\frac{1}{2} \left(200 - 300 - \frac{5}{5+} \right) = 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0$		> 120	200 - 300	2-4		SR22	jew	jew	jeu
$ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 $				5+					
$ 2 \\ \begin{array}{c} 2 \\ 2 \\ 2 \\ 2 \\ 120 \\ \end{array} \\ \begin{array}{c} 2 \\ 120 \\ 120 \\ 2 \\ 120 \\ 120 \\ 2 \\ 120$			F 0 2 00	2-4	SR23	SR24			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		< 100	50 - 200	5+		SR27 (++) / SR28 ()			
$ \begin{array}{ c c c c c } \hline 200 - 300 & \frac{5+}{5+} \\ \hline & & & \\ \hline & & & \\ \hline & & $		< 120	200 200	2-4		SR29 (++) / SR30 ()			
$ \frac{2}{100} + \frac{50 - 200}{200 - 300} + \frac{24}{5+} + \frac{3}{50} + $	2		200 - 300	5+		SR31			
$ \begin{array}{ c c c c c c c } \hline & & & & & & & & & & & & & & & & & & $	2		50 - 200	2-4	SR25 (++) / SR26 ()	SR32 (++) / SR33 ()	SR60	SR61	SR62
$\frac{1}{200-300} = \frac{2.4}{5+} = \frac{300-300}{5+} = \frac{2.4}{5+} = \frac{300-300}{5+} = \frac{2.4}{5+} = \frac{300-500}{5+} = \frac{2.4}{5+} = \frac{300-50}{5+} = \frac{2.4}{5+} = \frac{300-50}{5+} = \frac{2.4}{5+} = \frac{300-50}{5+} = \frac{2.4}{5+} $		> 120		5+			$N_{\rm jets} > 6$	$N_{\rm jets} > 6$	$N_{\rm jets} > 6$
$\frac{1}{3} + \frac{50 - 200}{3} + \frac{5+}{5} + \frac{50 - 200}{5} + \frac{24}{5} + \frac{5R37 (+) / SR38 (-)}{5R39 (+) / SR38 (-)} + \frac{50 - 200}{5} + \frac{24}{5} + \frac{5R35 (+) / SR36 (-)}{5R39 (+) / SR38 (-)} + \frac{5R39 (+) / SR38 (-)}{5R39 (+) / SR38 (-)} + \frac{5R39 (+) / SR38 (-)}{5R39 (+) / SR38 (-)} + \frac{5R39 (+) / SR38 (-)}{5R39 (+) / SR38 (-)} + \frac{5R39 (+) / SR38 (-)}{5R39 (+) / SR38 (-)} + \frac{5R39 (+) / SR38 (-)}{5R39 (+) / SR38 (-)} + \frac{5R39 (+) / SR38 (-)}{5R39 (+) / SR38 (-)} + \frac{5R39 (+) / SR38 (-)}{5R39 (+) / SR38 (-)} + \frac{5R39 (+) / SR38 (-)}{5R39 (+) / SR38 (-)} + \frac{5R39 (+) / SR38 (-)}{5R39 (+) / SR38 (-)} + \frac{5R39 (+) / SR38 (-)}{5R39 (+) / SR38 (-)} + \frac{5R39 (+) / SR38 (-)}{5R39 (+) / SR48 (+) / SR49 (-)} + \frac{5R49 (+) / SR49 (-)}{5R48 (+) / SR49 (-)} + \frac{5R49 (+) / SR49 (-)}{5R48 (+) / SR49 (-)} + \frac{5R49 (+) / SR49 (-)}{5R48 (+) / SR49 (-)} + \frac{5R49 (+) / SR49 (-)}{5R48 (+) / SR49 (-)} + \frac{5R49 (+) / SR49 (-)}{5R48 (+) / SR49 (-)} + \frac{5R49 (+) / SR49 (-)}{5R48 (+) / SR49 (-)} + \frac{5R49 (+) / SR49 (-)}{5R48 (+) / SR49 (-)} + \frac{5R49 (+) / SR49 (-)}{5R48 (+) / SR49 (-)} + \frac{5R49 (+) / SR49 (-)}{5R48 (+) / SR49 (-)} + \frac{5R49 (+) / SR49 (-)}{5R49 (+) / SR49 (-)} + \frac{5R49 (+) / SR49 (-)}{5R49 (+) / SR49 (-)} + \frac{5R49 (+) / SR49 (-)}{5R49 (+) / SR49 (-)} + \frac{5R49 (+) / SR49 (-)}{5R49 (+) / SR49 (-)} + \frac{5R49 (+) / SR49 (-)}{5R49 (+) / SR49 (-)} + \frac{5R49 (+) / SR49 (-)}{5R49 (+) / SR49 (-)} + \frac{5R49 (+) / SR49 (-)}{5R49 (+) / SR49 (-)} + \frac{5R49 (+) / SR49 (-)}{5R49 (+) / SR49 (-)} + \frac{5R49 (+) / SR49 (-)}{5R49 (+) / SR49 (-)} + \frac{5R49 (+) / SR49 (-)}{5R49 (+) / SR49 (-)} + \frac{5R49 (+) / SR49 (-)}{5R49 (+) / SR49 (-)} + \frac{5R49 (+) / SR49 (-)}{5R49 (+) / SR49 (-)} + \frac{5R49 (+) / SR49 (-)}{5R49 (+) / SR49 (-)} + \frac{5R49 (+) / SR49 (-)}{5R49 (+) / SR49 (-)} + \frac{5R49 (+) / SR49 (-)}{5R49 (+) / SR49 (-)} + \frac{5R49 (+) / SR49 (-)}{5R49 (+) / SR49 (-)} + \frac{5R49 (+) / SR49 (-)}{5R49 (+) / SR49 (-)} + \frac{5R49 (+) / SR49 (-)}{5R49 (+) / SR49 (-)} + \frac{5R49 (+) / SR49 (+) / SR49 (+)}{5R49 (+) / SR49 (+)} + \frac{5R49 (+) / SR49 (+) / SR49 (+)}{5R49 (+)$		> 120	200 - 300	2-4		SR34			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			200 000	5+					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			50 - 200	2-4		SK37 (++) / SK38 ()			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		< 120		5+	SR35 (++) / SR36 ()	SR39 (++) / SR40 ()			
$\frac{1}{10000000000000000000000000000000000$	3+		200 - 300	2-4		SK37 (++) / SK38 ()			
$\frac{2}{100} > 120 > 50 \frac{2}{5+} SR41 \frac{3R42(++)/3R43(-)}{SR44(++)/SR45(-)} $ inclusive $\frac{300-500}{500} 2.4 \frac{300-500}{5+} SR46(++)/SR49(-) $ $\frac{300-500}{5+} SR46(++)/SR49(-) $				24		SR39 (++) / SR40 ()			
inclusive inclusive $\begin{array}{c ccccccccccccccccccccccccccccccccccc$		> 120	> 50	2- 4 5+	SR41	SR42 (++) / SR45 ()			
inclusive inclusive $2-4$ $2-4$ $300 - 500$ $2-4$ $300 - 500$ $5+$ $300 - 500$ $5+$			300 - 500				SR46 (++) / S	SR47 ()	
inclusive inclusive 300 - 500 5+ SR50 (++) / SR51 ()			> 500	2-4			SR48 (++) / S	SR49 ()	
	inclusive	inclusive	300 - 500	_			SR50 (++) / S	SR51 ()	
> 500 SR52 (++) / SR53 ()			> 500	5+			SR52 (++) / S	GR53 ()	

SRHL/HighLow, 43 bins

N _{b jets}	$M_{\rm T}^{\rm min}$ (GeV)	$E_{\rm T}^{\rm miss}$ (GeV)	Njets	$H_{\rm T} < 300 {\rm GeV}$	$H_{\rm T} \in [300, 1125] { m GeV}$	$H_{\rm T} \in [1125, 1300] {\rm GeV}$	$H_{\rm T} > 1300{\rm GeV}$		
		50 200	2-4	SR1	SR2				
0	< 120	50 - 200	5+		SR4				
0	< 120	200 - 300	2-4	SR3	SR5 (++) / SR6 ()				
		200 - 300	5+		SR7				
		50 - 200	2-4	SR8	SR9				
1	< 120	30 - 200	5+		SR12 (++) / SR13 ()				
1	< 120	200 - 300	2-4	SR10 (++) / SR11 ()	SR14				
		200 500	5+		SR15 (++) / SR16 ()				
		50 - 200 2-4		SR17	SR18	SR40 (++) / SR41 ()	SR42 (++) / SR43 ()		
2	< 120	50 - 200	5+		SR21 (++) / SR22 ()				
2	< 120	200 - 300	- 300 2-4	2-4 SR	SR19 (++) / SR20 ()	SR23 (++) / SR24 ()			
		200 - 500	5+		SR25				
3.	< 120	50 - 200	2+	SR26 (++) / SR27 ()	SR28 (++) / SR29 ()				
5+	< 120	200 - 300	2+	51(20 (++) / 51(2/ ()	SR30				
inclusive	> 120	50 - 300	2+	SR31	SR32				
		300 - 500	2-4			SR33 (++) / SR34 ()			
inclusive	inclusive	> 500	2-4			SR35 (++) / SR36 ()			
Inclusive	liciusive	300 – 500				SR37 (++) / SR38 ()			
		> 500	57		SR39				

SRLM/LowMET, 11 bins

N _{b jets}	Njets	$H_{\rm T} \in [300, 1125] { m GeV}$	$H_{\rm T} \in [1125, 1300] { m GeV}$	$H_{\rm T} > 1300 {\rm GeV}$
0	2-4	SR1		
0	5+	SR2	SR8 ($N_{\text{jets}} < 5$)	SR10 ($N_{jets} < 5$)
1	2-4	SR3		
1	5+	SR4		
2	2-4	SR5	SR9 ($N_{\text{jets}} \ge 5$)	SR11 ($N_{\text{jets}} \ge 5$)
2	5+	SR6		
\geq 3	2+	SR7		

SRLL/LowLow, 8 bins

N _{b jets}	$M_{\rm T}^{\rm min}$ (GeV)	$H_{\rm T}$ (GeV)	$E_{\mathrm{T}}^{\mathrm{miss}} \in [50, 200] \mathrm{GeV}$	$E_{\rm T}^{\rm miss} > 200 {\rm GeV}$		
0	< 120		SR1	SR2		
1		> 400	SR3	SR4		
2			SR5	SR6		
\geq 3			SR7			
Inclusive	> 120		SR8			

SRML/MultiLepton, 44 bins

		off-Z			on-Z			
N _{b jets}	$H_{\rm T}$ (GeV)	$E_{\mathrm{T}}^{\mathrm{miss}} \in [50, 150] \mathrm{GeV}$	$E_{\mathrm{T}}^{\mathrm{miss}} \in [150, 300] \mathrm{GeV}$	$E_{\rm T}^{\rm miss} \ge 300 {\rm GeV}$	$E_{\mathrm{T}}^{\mathrm{miss}} \in [50, 150] \mathrm{GeV}$	$E_{\mathrm{T}}^{\mathrm{miss}} \in [150, 300] \mathrm{GeV}$	$E_{\rm T}^{\rm miss} \ge 300 {\rm GeV}$	
0	<400	SR1/SR2 ⁺	SR3/SR4 ⁺		SR22/SR23 ⁺	SR24/SR25 ⁺		
0	400-600	SR5	SR6		SR26/SR27 ⁺	SR28/SR29 ⁺		
1	<400	SR7	SR8		SR30	SR31		
1	400-600	SR9	SR10	SP20/SP21+	SR32	SR33	SP12/SP11 [†]	
2	<400	SR11	SR12	3K20/ 3K21	SR34	SR35	3143/3144	
2	400-600	SR13	SR14		SR36	SR37		
\geq 3	<600	SI	R15		SI	R38		
Inclusive	≥ 600	SR16/SR17 [†]	SR18/SR19 [†]		SR39/SR40 [†]	SR41/SR42 [†]		

SR62

 $1.3{\pm}0.9$

0

$2L SS + \ge 3L$

	HH reg	gions	HL reg	gions	LL reg	ions	ML reg	ions	LM reg	gions
	Expected SM	Observed	Expected SM	Observed	Expected SM	Observed	Expected SM	Observed	Expected SM	Observed
SR1	1510 ± 310	1609	1300±310	1504	20±6	25	220±40	263	240±50	314
SR2	590 ± 90	647	310±70	319	4.9±1.5	6	2.5±2.5	1	20±5	22
SR3	103 ± 22	132	25±6	32	23±6	29	32±6	34	140±31	159
SR4	38±7	51	32±8	32	4±4	8	0.9±0.5	1	32±7	37
SR5	57 ± 10	49	29±6	32	7.7±2.1	13	22±4	28	54±8	66
SR6	32 ± 9	23	17±6	11	1.5±0.8	0	9.5±1.8	8	22±4	33
SR7	5.5 ± 1.7	7	4.5±2.5	6	2.5±1.2	0	210±40	265	9.7±2.1	23
SR8	25 ± 6	31	1010 ± 250	1223	0.07±0.07	0	36±6	47	1.5 ± 0.5	3
SR9	21 ± 5	20	270±60	307			21.6±3.2	20	1.6 ± 0.4	1
SR10	$9.4{\pm}1.9$	11	7.1 ± 1.7	5			11.6±1.9	16	2.9±2.9	1
SR11	930 ± 230	1068	6.5 ± 1.6	7			84±11	105	1.9±1.4	3
SR12	330 ± 70	370	39±9	42			15.5 ± 2.1	17		
SR13	36±7	38	31±8	37			15.7±2.2	21		
SR14	25 ± 5	31	23±5	27			5.3±0.8	8		
SR15	44±7	63	2.1 ± 1.1	7			10.2±2.1	12		
SR16	39±8	38	1.7±0.9	2			27±4	40		
SR17	27 ± 5	30	210±40	256			0.8±0.5	2		
SR18	14.8 ± 3.2	15	85±14	104			17.8±2.4	24		
SR19	11.5 ± 3.0	12	2.5 ± 1.2	4			1.0±0.4	0		
SR20	11.8 ± 2.6	14	3.0 ± 1.5	3			17.8 ± 3.0	30		
SK21	9.6 ± 2.1	16	18.9 ± 3.5	2/			1.26 ± 0.33			
SK22	10.0 ± 1.6	15	15.9 ± 2.8	18			830±180	955		
5K25 CD24	270 ± 40	343	3.3 ± 0.0	2			108±22	130	Source)
SK24 SR25	143 ± 20 15 2 \pm 2 4	109	4.4 ± 1.0	Z E			$11/\pm 20$	139		
SR23	13.2 ± 2.4 12.8 ± 2.4	11	4.3±1.7	0			11.1 ± 2.3	0	Integra	ated lumin
SR20 SR27	13.0 ± 3.4 22 ± 5	10	0.2±2.2 81±2.2	0			111 ± 24 21 ± 5	20	Lentor	selection
SR27	33 ± 3 29+4	43	9.1 ± 2.2	12			421 ± 3	20 45	Т	
SR20	29 ± 4 115 ± 25	9	10.8 ± 2.8	7			$\frac{42\pm10}{3.1\pm0.9}$	-1-0	Irigge	r efficiency
SR30	67+12.5	5	10.0 ± 2.0 1 1 + 0 4	3			320+50	408	Pileup)
SR31	75+18	6	22 ± 0.5	5			47+8	50	Iet ene	erov scale
SR32	5.9 ± 1.0	14	2.2 ± 0.5 2.6 ±0.5	3			51+9	62		igy seale
SR33	65+19	7	22+6	23			151+26	24	b tagg	ing
SR34	67 ± 1.9	11	72+14	8			131+24	157	Simula	ated sample
SR35	10.3 ± 1.9	17	2.3 ± 0.5	4			20+4	24	Scale a	and PDF va
SR36	8.6+1.7	11	0.42 ± 0.33	1			27+5	36	There	
SR37	10.6 ± 2.0	6	3.2+1.5	3			7.8+1.5	11	Ineore	etical back
SR38	7.3 ± 1.3	5	$1.4{\pm}0.6$	0			12.9 ± 2.6	18	Nonpr	compt lepto
SR39	9.6±2.2	8	0.41 ± 0.25	0			82±14	117	Charo	e misidenti
SR40	$9.2{\pm}1.9$	11	3.1±0.7	7			18±4	26		e mibiaem
SR41	$1.3{\pm}0.6$	2	4 ± 4	0			39±8	29		
SR42	$0.6{\pm}0.4$	1	4.7±0.9	8			4.9±0.9	7		
SR43	$0.8 {\pm} 0.4$	0	1.71 ± 0.35	6			46±10	44		
SR44	$0.7{\pm}0.4$	1					5.7±1.2	11		
SR45	$0.7{\pm}0.5$	1								
SR46	42 ± 7	59								
SR47	18 ± 4	23								
SR48	13 ± 9	10								
SR49	$2.0{\pm}0.5$	4								
SR50	6.3 ± 1.0	13								
SR51	3.7 ± 0.7	4								
SR52	1.26 ± 0.33	4								
SR53	$0.4{\pm}0.4$	2								
SR54	10.1 ± 1.5	24								
SR55	7.0±1.1	4								
SR56	4.3 ± 0.9	5								
SK57	5.3±0.8									
5K58	6±6	6								
5K59	2.2 ± 0.4	3								
SK6U	1.8 ± 0.5	5								
SK01	1.9±0.4	4	1		1		1		1	

Object	$p_{\rm T}$ (GeV)	$ \eta $
Flootnono	<u>\</u> 1E	
Electrons	> 15	< 2.3
Muons	> 10	< 2.4
Jets	> 40	< 2.4
b-tagged jets	> 25	< 2.4

Source	Typical uncertainty (%)	Correlation across years
Integrated luminosity	2.3-2.5	Uncorrelated
Lepton selection	2 - 10	Uncorrelated
Trigger efficiency	2 - 7	Uncorrelated
Pileup	0 - 6	Uncorrelated
Jet energy scale	1 - 15	Uncorrelated
b tagging	1 - 10	Uncorrelated
Simulated sample size	1 - 20	Uncorrelated
Scale and PDF variations	10 - 20	Correlated
Theoretical background cross sections	30 - 50	Correlated
Nonprompt leptons	30	Correlated
Charge misidentification	20	Uncorrelated

(a) T1tttt

(b) T5tttt

(c) T5qqqqWZ

(d) T6ttWW

RPC

RPV

T1tbs

2L SS + ≥3L

2L SS + ≥3L

- UCSI
- Gluino pair production models with four top quark final states, T1tttt (left) and T5tttt (center)
- Sbottom squark production model T6ttWW (right)

- Gluino pair production models T5qqqqVV (left) and T5qqqqWW (right) decaying into four light flavor quarks and two bosons
 - Two assumptions on chargino mass: halfway in between gluino and LSP mass (sub-left), or 20GeV higher than LSP mass (sub-right)

- Stop squark pair production model T6ttHZ with three assumptions on gen-2 squark decay to gen-1 squark + Z/H
 - Z (0%), H (100%)
 - Z (50%), H (50%)
 - Z (100%), H (0%)

Z (50%)

Z (100%)

Limit summaries

Selection of observed limits at 95% C.L. (theory uncertainties are not included). Probe **up to** the quoted mass limit for light LSPs unless stated otherwise. The quantities ΔM and x represent the absolute mass difference between the primary sparticle and the LSP, and the difference between the intermediate sparticle and the LSP relative to ΔM , respectively, unless indicated otherwise.

Limit summaries

UCSB