Compressed Electroweak Searches at the LHC

Sezen Sekmen
Kyungpook National University
for ATLAS and CMS Collaborations
SUSY 2019, Corpus Christi, 20–24 May 2019
Compressed SUSY has spectra with very small mass differences (Δm) between sparticles.
→ challenging to observe at experiments.
In this talk: EWK production with small Δm(NLSP, LSP).
No sign of SUSY at the LHC may imply compressed spectra or other difficult corners of the SUSY parameter space.

Motivated scenarios with compressed EWK sector:
• Higgsino-like N1, N2, C1: Motivated by Naturalness: $|\mu| \sim O(100\text{GeV}) \ll |M_1| \ll |M_2|$.
 • Pure Higgsinos: Mass splittings generated by radiative corrections $\rightarrow O(100\text{MeV})$
 • Mixed Higgsino-wino: larger mass splittings of $O(1-10\text{GeV})$.
• Compressed wino-like LSP and bino-like NLSP: motivated by consistency with experimental dark matter constraints on relic density and direct detection.
• Anomaly mediated SUSY breaking models predict pure wino LSP.
Compressed SUSY is difficult to observe at the LHC due to

- Lower production cross sections, especially for Higgsinos.
- Soft decay products from compressed decays.

Strategies for improving sensitivity:

- Increase acceptance by improving reconstruction and identification of “softer” (lower p_T) objects.
- Design dedicated triggers for compressed spectra, e.g. trigger soft lepton pairs.
- Look inside events with hard initial state radiation (ISR), which can boost the rest of the system.
- Explore long lifetimes in pure wino or Higgsino cases with very small Δm using long-lived signatures, like disappearing tracks.
Exploring the soft dileptons final state

Main target process: \(\text{N2C1 production with } \Delta m(\text{N2/C1, N1}) \sim 1-50 \text{ GeV} \), with decay through virtual W or Z bosons.

- Small \(\Delta m \) gives rise to very soft leptons challenging to detect. Small dilepton invariant masses \(m_{ll} \).
- Moderate \(E_T^{\text{miss}} \) from N2 / C1 decays.
- The recoil against the ISR jet will boost the N2C1 system in the opposite direction and
 - increase chances that leptons will pass \(p_T \) thresholds,
 - increase chances that “invisible” objects will give rise to larger \(E_T^{\text{miss}} \).

Further interpretations for compressed stop (CMS) and compressed slepton (ATLAS) models.
Explore soft leptons:

Reliable soft lepton ID is crucial

→ ATLAS uses a reoptimized lepton selection in low p_T to improve signal efficiency.

Combined reconstruction, ID, isolation and vertex association efficiencies within detector acceptance for a mix of EWkino and slepton samples (lepton p_T close to $\Delta m/3$ for EWkinos or $\Delta m/2$ for sleptons):

e, μ efficiency $\sim 0.3, 0.7$ for $p_T = 5$ GeV.

Explore dilepton invariant mass edge:

- For $N2 \rightarrow ZN1$, $Z \rightarrow ll$, kinematic endpoint of the dilepton invariant mass distribution is $m_{ll}^{\text{max}} = \Delta m(N2, N1)$.
- Simulated m_{ll} distribution agrees with analytic calculation of the expected lineshape (shape depends on the product of signed N2 and N1 mass parameters).
Final state: 2 oppositely charged leptons + moderate $E_T^{\text{miss}} + \geq 1$ jet (for ISR)

Trigger:

- CMS $\mu\mu$ channel:
 Dedicated soft dimuon trigger: $p_T(\mu) > 3$ GeV, $p_T(\mu\mu) > 3$ GeV.
 \rightarrow offline E_T^{miss} cut lowered to >125 GeV

- Soft dielectron trigger challenging. Using inclusive E_T^{miss} triggers.
 \rightarrow offline E_T^{miss} cut >200 GeV

- ATLAS: inclusive E_T^{miss} triggers, online threshold between 70-110 GeV.
 \rightarrow offline E_T^{miss} cut >120 GeV. Reweights MC with efficiency.

Preliminary event selection (main cuts)

<table>
<thead>
<tr>
<th></th>
<th>CMS</th>
<th>ATLAS 2 leptons</th>
<th>ATLAS 1 lep + 1 track</th>
<th>Motivation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e_1\mu$ p_T</td>
<td>[5 - 30]</td>
<td>l_1: >5</td>
<td>>5, <10 for lepton, track</td>
<td>soft leptons</td>
</tr>
<tr>
<td>(2nd μ p_T)</td>
<td>[3.5 - 30]</td>
<td>e_2, μ_2 > 4.5, 3</td>
<td></td>
<td>boosted E_T^{miss}</td>
</tr>
<tr>
<td>E_T^{miss}</td>
<td>>125,200 for $\mu\mu$, ee</td>
<td>>120</td>
<td>>200</td>
<td></td>
</tr>
<tr>
<td>n_{jets}</td>
<td>≥ 1</td>
<td>≥ 1</td>
<td>≥ 1</td>
<td>ISR activity</td>
</tr>
<tr>
<td>H_T</td>
<td>≥ 100</td>
<td>jet1 $p_T > 100$</td>
<td>jet1 $p_T > 100$</td>
<td>Hard ISR</td>
</tr>
<tr>
<td>n_{bjets}</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>reject ttjets</td>
</tr>
<tr>
<td>m_T</td>
<td>< 70</td>
<td>[10, 60]</td>
<td>< 60</td>
<td>reject ttjets</td>
</tr>
<tr>
<td>$m_{\tau\tau}$</td>
<td>veto [0, 160]</td>
<td>veto [0, 160]</td>
<td>-</td>
<td>reject $Z\rightarrow\tau\tau$</td>
</tr>
<tr>
<td>m_{ll}</td>
<td>[4, 9] or [10.5, 50]</td>
<td>[3,60] (ee) [1,60] ($\mu\mu$)</td>
<td>[0.5, 5]</td>
<td>reject J/psi, Z</td>
</tr>
</tbody>
</table>

+ several other cuts

low E_T^{miss} - low Δm, low E_T^{miss} - high Δm, high E_T^{miss} dedicated regions
Recursive jigsaw reconstruction: Divides event into two hemispheres perpendicular to thrust axis (maximum back-to-back p_T, approximates the recoil direction)
- **S**: contains EWKino / slepton decay products
- **ISR**: contains adronic ISR activity.

Builds kinematic variables to isolate the EWKino / slepton + ISR signal:
- R_{ISR}: $E_T^{\text{miss}} / p_T($ISR system$)$
- M_T^S: Transverse mass of the S system.

Signal region binning:
- **ATLAS**: m_\ll and R_{ISR} for EWKinos (m_{T2} and E_T^{miss} for sleptons)
- **CMS**: m_\ll and E_T^{miss} for EWKinos (lepton p_T and E_T^{miss} for stops).
Mainly data-driven background estimation methods (similar in CMS and ATLAS):

- **tt / tW, WW/WZ, Z*(γ*)+jets**
 BG estimate using data events in control regions and MC transfer factors.

- **Fake / non-prompt lepton**
 BG (from jet misidentified as leptons, γ conversions semileptonic heavy flavor decays) by
 - loosening the tight lepton ID in one of the leptons in the SRs
 - reweighting the events by a non-prompt lepton misidentification efficiency obtained from a multijet-enriched measurement sample.

Data are consistent with the SM.
Soft dileptons: BG estimation, results

ATLAS-CONF-2019-014

Compare to SM predictions by a profile likelihood method (similar in ATLAS and CMS):

- BG-only fit to control regions to constrain BG normalization parameters.
- Compare with data in validation regions to verify accuracy of BG modelling.
- BG + signal fit to data in signal regions.

Data are consistent with the SM.
Soft dileptons: Bino LSP - wino NLSP limits

CMS SUS-16-048
N2/C1 excluded up to 230 GeV for $\Delta m = 20$ GeV.
Uniquely complements the other EWKino searches.

ATLAS-CONF-2019-014
N2/C1 excluded up to 205 GeV for $\Delta m = 5$ GeV.
Achieve LEP C1 limit 103.5 GeV for $\Delta m = 2.6$ GeV

Extended sensitivity in the ATLAS search in low Δm.
Soft dileptons: Higgsino LSP limits

CMS SUS-16-048

SMS model:

N2 excluded up to 167 GeV for $\Delta m = 15$ GeV.

ATLAS-CONF-2019-014

SMS model:

N2 excluded up to 162 GeV for $\Delta m = 10$ GeV.

phenomenological MSSM:

μ excluded up to 160 GeV for $M_1, M_2 = 300, 600$ GeV.

μ excluded up to 100 GeV for $M_1, M_2 = 700, 1400$ GeV.

Larger $M_1 \rightarrow$ smaller $\Delta m \rightarrow$ less sensitivity.
Compressed stop limits: EWK mediated decays

CMS SUS-16-048

Soft dilepton search:

Leptonic stop decays

C1 mediated stops excluded up to 450 GeV for $\Delta m = 40$ GeV.

CMS SUS-17-005, CMS SUS-16-049

Combination of two dedicated stop searches:

- Soft single lepton + high E_T^{miss} + hight p_T ISR jet.
- Multijets + high E_T^{miss}.

Hadronic stop decays

C1 mediated stops excluded up to 670 GeV.
Soft dilepton: compressed slepton limits

- Direct light flavor slepton pair production.
- Limits derived by a fit to m_{T2} distribution.

Sleptons excluded up to 238 GeV for $\Delta m = 10$ GeV.
Achieve LEP smuon limit 94.6 GeV ($\Delta m = 2$ GeV) for $\Delta m = 670$ MeV - 29 GeV.
Same sign dilepton channel in a generic multilepton EWKino search.

- Relevant for compressed EWKinos.
 - In N2C1 production, one of the leptons in N2 decay chain **may not fulfil selection criteria**, and be **lost**. Recover these events.

Event selection:

- SS dilepton pair with
 - \(p_T^{1,2}(e) > 25,15 \text{ GeV} \), or
 - \(p_T^{1,2}(\mu) > 20,10 \text{ GeV} \)
- \(E_T^{\text{miss}} > 60 \text{ GeV} \).
- Veto opposite sign leptons
- 0 and 1 ISR jet categories
- Binning done in \(E_T^{\text{miss}}, \min(m_T(l_1), m_T(l_2)) \) and \(p_T(\ell\ell) \).

Data are consistent with the SM.
Same sign dileptons: Limits

N2C1 production, 2-body decays through left or right sleptons.

\[m_{\tilde{\ell}} = m_{\tilde{\nu}} = m_{\tilde{\chi}_0^0} + x \left(m_{\tilde{\chi}_0^0} - m_{\tilde{\chi}_1^0} \right) \]

\(x = 0.05, 0.95 \) give compressed scenarios.

Combination of the SS channel and a trilepton channel.

SS channel exclusively makes the low \(\Delta m \) region accessible.
• When $\Delta m(C1, N1) \sim O(100 \text{ MeV})$, $C1$ is long lived.

• Decays in the tracker to a soft pion + $E_T^{\text{miss}} \rightarrow$ disappearing track signature.

• Final state for EWKino production: disappearing track + E_T^{miss} + hard ISR jet.

• Find tracklets with hits in pixel layers ($R = [12,30]$ cm), but no hits in silicon strip layers ($R > 30$ cm).
For pure wino C1 with lifetime $c\tau = 0.2\text{ns}$, C1 excluded up to 460 GeV.

For pure higgsino C1, C1 excluded up to 152 GeV.

AMS B C1 excluded up to 505 GeV for $c\tau = 0.5-60\text{ns}$.
Summary

• Non-existence of new physics signals requires exploring more challenging scenarios, such as compressed SUSY.

• Theory motivations for compressed EWKino scenarios: include Naturalness and compatibility with DM-related observations.

• Compressed EWKinos lead to soft decay products.
 • Employed improved soft object identification methods, soft object triggers, ISR objects, same sign dileptons or long-lived signatures in searches.

• Larger datasets and further advancements in search methods will improve the sensitivity.