Indirect Studies of Electroweakly Interacting Particles at 100 TeV Hadron Colliders

So Chigusa

Department of Physics, University of Tokyo

May 6, 2019 @ Pheno

SC, Yohei Ema, and Takeo Moroi PLB **789** (2019) 106 [arXiv:1810.07349] Tomohiro Abe, SC, Yohei Ema, and Takeo Moroi [arXiv:1904.11162]

ElectroWeakly Interacting Massive Particle (EWIMP)

- EWIMP : massive particle with non-zero weak charges
- Good dark matter (DM) candidate · · · "WIMP miracle"

ex) Higgsino, Wino, Minimal Dark Matter

Detection methods of EWIMPs

Indirect detection

Difficulty with Higgsino

Higgsino detection may be difficult (model dependent)

Disappearing track search

Tiny gaugino fraction (= "almost pure" Higgsino) makes Higgsino short lifetime with $c\tau \ll \mathcal{O}$ (cm)

How can we search for short lifetime Higgsino?

Invitation : indirect study using colliders

Today I introduce

Indirect search with $\ell\ell/\ell\nu$ production @ 100 TeV collider

Features

- ✓ Independent of EWIMP lifetime \Rightarrow Good for Higgsino
- Clean, tremendous events : 2 energetic leptons (+ jet)
 ⇒ Signal shape as a func. of lepton inv. mass is usable
 - \bigcirc to control systematic errors
 - to determine EWIMP mass and charges

Introduction

Neutral current (NC) / Charged current (CC)

Parton level scattering amplitude for $q^a \bar{q}^b \rightarrow \ell \ell$ (NC) / $\ell \nu$ (CC)

Cross section for fixed $q^2 \equiv s'$

$$|\mathcal{M}|^2 = |\mathcal{M}_{\rm SM}|^2 + 2\Re \left[\mathcal{M}_{\rm SM}\mathcal{M}_{\rm EWIMP}^*\right] + \cdots$$
$$\frac{d\sigma^{ab}}{d\sqrt{s'}} \equiv \frac{d\sigma_{\rm SM}^{ab}}{d\sqrt{s'}} + \frac{d\sigma_{\rm EWIMP}^{ab}}{d\sqrt{s'}} + \cdots$$

Define the size of correction

$$\delta_{\sigma}^{ab}(\sqrt{s'}) \equiv \frac{d\sigma_{\rm EWIMP}^{ab}/d\sqrt{s'}}{d\sigma_{\rm SM}^{ab}/d\sqrt{s'}}$$

Cross section correction from EWIMPs

Plot of δ_{σ}^{ab} for $q^a \bar{q}^b \to \ell \nu$ (CC) with m = 1 TeV EWIMPs

<u>Peak structure at $\sqrt{s'} = 2m$ plays an important role</u>

"threshold effect" Same for $\ell\ell$ (NC)

Idea of fitting based analysis

Systematic errors may modify theoretical prediction $\frac{d\sigma_{\rm SM}}{1/\sqrt{L}}$

- luminosity error
- beam energy error
- choice of renormalization scale
- choice of factorization scale
- choice of PDF
- etc \cdots

Idea of fitting based analysis

Absorb above errors into additional parameters θ (Similar to "side band analysis")

Fitting based analysis

Consider number of events binned by $\sqrt{s'}$

- $\mathbf{x} = \{x_i\}$: prediction for SM (*i*: label of bin)
- $-\ensuremath{\,\check{x}} = \{\check{x}_i\}$: experimental data (now assume SM+EWIMP)

Define new theoretical prediction $\tilde{x}_i(\boldsymbol{\theta})$

$$\tilde{x}_i(oldsymbol{ heta})\equiv x_i\,f_{\mathrm{sys},i}(oldsymbol{ heta})$$
 ; $f_{\mathrm{sys},i}(oldsymbol{0})=1$

CDF collaboration '08 $\,$

– We checked systematic errors successfully absorbed into $\boldsymbol{\theta}$

Use a test statistic q_0 that tests the validity of SM

$$\frac{q_0}{\theta} \sim \min_{\boldsymbol{\theta}} \sum_{i:\text{bin}} \frac{\left(\tilde{x}_i - \tilde{x}_i(\boldsymbol{\theta})\right)^2}{\tilde{x}_i(\boldsymbol{\theta})} \sim \chi^2(1)$$

Result: detection reach

 $\underline{Solid \ lines}$: upper bound on the sensitivity

<u>Dashed lines</u> : when statistical errors dominate systematic ones

Which bin contributes a lot?

Plot contribution to q_0 from each bin

Peak structure at $\sqrt{s'} \sim 2m$ is not fitted. It is very important for detection.

Determination of EWIMP properties

For $SU(2)_L$ *n*-plet Dirac fermion with $U(1)_Y$ charge Y

We can extract m, C_1, C_2 from peak structure

Determination of (m, C_1, C_2) for 1.1 TeV Higgsino

Solid (Dotted) : 2σ (1σ) n_Y : $SU(2)_L$ *n*-plet with $U(1)_Y$ charge Y

- Only doublet is allowed - $m \sim 1.1 \,\mathrm{TeV} \pm 100 \,\mathrm{GeV}$

 $11 \, / \, 12$

Conclusion

I introduced a way for probing EWIMPs with precision measurement at 100 TeV colliders $% \left({{\rm EWIMPS}} \right)$

I also introduced fitting based analysis, where systematic errors are absorbed into the fit function

- All the errors we have considered are fitted well
- Strong discovery potential for short lifetime Higgsino 850 GeV (1.7 TeV) at 5σ (95% C.L.)

• The peak structure of the EWIMP effect can also be used to determine the EWIMP properties (mass, charge)

Peak at $\sqrt{s'} = 2m$ is important for all the analysis

Backup slides

Indirect detection of DM

EWIMP annihilation into SM γ channel best for EWIMP

8 Higgsino

Cross section too small

Direct detection of DM

Collision btw. DM and nucleus Look for recoiled nuclei

Wino & MDM
 Region of future interest

8 Higgsino

Cross section below νBG

chargino neutralino mass difference

H. Fukuda, et al. [1703.09675]

$$\Delta m_{+} = \Delta m_{\rm rad} + \Delta m_{\rm tree}$$
$$\Delta m_{\rm rad} \simeq \frac{1}{2} \alpha_2 m_Z s_W^2 \left(1 - \frac{3m_Z}{2\pi m_{\tilde{\chi}^{\pm}}} \right) \simeq 355 \,{\rm MeV},$$
$$\Delta m_{\rm tree} \simeq \frac{v^2}{8|\mu|} \left[|X| \Delta_X + \sin 2\beta \,\Re(Y) \right] \sim 1 \,{\rm GeV} \left| \frac{\mu}{M_i} \right|,$$

with $X, Y = \mu^* (g_1^2 / M_1 \pm g_2^2 / M_2), \ \Delta_X = \sqrt{1 - \sin^2 \theta_X \sin^2 2\beta}$

$$c\tau \simeq 0.7 \,\mathrm{cm} \left[\left(\frac{\Delta m_+}{340 \,\mathrm{MeV}} \right)^3 \sqrt{1 - \frac{m_\pi^2}{\Delta m_+^2}} \right]^{-1}$$

Production at collider

Difficulty : event recognition

• disappearing track \Leftarrow strict, requires long life time

- $\circ c\tau_{\tilde{W}} \sim 6 \,\mathrm{cm}, \, m_{\tilde{W}} < 460 \,\mathrm{GeV}$ excluded
- $c\tau_{\tilde{H}} \sim 1 \,\mathrm{cm}, \, m_{\tilde{H}} < 152 \,\mathrm{GeV} \,\mathrm{excluded}$ for pure Higgsino
- \otimes Higgsino mixed with gaugino : $c\tau \ll \mathcal{O}(cm)$
- mono-X search : recognize events with initial state radiation H. Baer, et al. [1401.1162] no bound on Higgsino @ LHC

Studies of indirect search at collider

Applicable to Higgsino independent of life time

S. Matsumoto, et al.

Previous analysis:

D. S. M. Alves, et al. [1410.6810] @ LHC, 100 TeV
 C. Gross, et al. [1602.03877] @ LHC
 M. Farina, et al. [1609.08157] @ LHC
 K. Harigaya, et al. [1504.03402] @ lepton collider
 S. Matsumoto, et al. [1711.05449] @ HL-LHC

Up to HL-LHC era Only a part of allowed region probed

- $m_{\tilde{W}} < 300 \text{ GeV} \ll 3 \text{ TeV}$
- $m_{\tilde{H}} < 150 \text{ GeV} \ll 1 \text{ TeV}$

Let's consider future 100 TeV collider to cover all the regions!!

Vacuum polarization effect from EWIMP

Assume all new physics except EWIMPs are decoupled Consider vacuum polarization effect from EWIMPs

f is a loop function

$$f(x) = \begin{cases} \frac{1}{16\pi^2} \int_0^1 dy \ y(1-y) \ln(1-y(1-y)x-i0) & \text{(Fermion)} \\ \frac{1}{16\pi^2} \int_0^1 dy \ (1-2y)^2 \ln(1-y(1-y)x-i0) & \text{(Scalar)} \end{cases}$$

Effective lagrangian (Note: q^2/m^2 expansion NOT performed)

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + C_1 {g'}^2 B_{\mu\nu} f\left(-\frac{\partial^2}{m^2}\right) B^{\mu\nu} + C_2 g^2 W^a_{\mu\nu} f\left(-\frac{D^2}{m^2}\right) W^{a\mu\nu}$$

Group theoretical factors C_1, C_2

 $SU(2)_L$ *n*-plet with $U(1)_Y$ charge Y contributes

$$C_{1} = \frac{\kappa}{8}nY^{2}, \quad C_{2} = \frac{\kappa}{96}(n^{3} - n),$$

$$\kappa = \begin{cases} 16 & (\text{Dirac fermion}) \\ 8 & (\text{Weyl or Majorana fermion}) \\ 2 & (\text{complex scalar}) \\ 1 & (\text{real scalar}) \end{cases}$$

For popular EWIMPs

	Higgsino	Wino	5-fermion $(Y = 0)$	7-scalar $(Y = 0)$
C_1	1	0	0	0
C_2	1	2	10	7/2

Proton cross section at $\sqrt{s} = 100$ TeV can be obtained using

$$\frac{dL_{ab}}{dm_{\ell\ell}} \equiv \frac{1}{s} \int_0^1 dx_1 dx_2 \ f_a(x_1) f_b(x_2) \delta(\frac{m_{\ell\ell}^2}{s} - x_1 x_2)$$

$$f_a(x) : \text{ parton distribution function (PDF) for } a$$

$$\frac{d\sigma}{dm_{\ell\ell}} = \sum_{a,b} \frac{dL_{ab}}{dm_{\ell\ell}} \frac{d\sigma^{ab}}{dm_{\ell\ell}}$$

Indirect study with precision measurement

<u>**Task</u></u> : Detect \mathcal{O}(1)% effect through precision measurement <u>Method**</u> : Use functional form of $\delta_{\sigma}(\sqrt{s'})$ **Difficulty** :</u>

- For $\ell \ell$ (NC) : $\sqrt{s'} = m_{\ell \ell}$
- For $\ell \nu$ (CC) : Use transverse mass m_T instead

$$m_T^2 \equiv 2p_{T,\ell} \, p_{T,\text{miss}} (1 - \cos \phi_{T,\ell,\text{miss}}) \le m_{\ell\nu}^2$$

 $(m_T \simeq m_{\ell\nu} \text{ if } p_{\ell,z}, p_{\nu,z} \text{ are small})$

δ_{σ} as function of m_T

$\ell\nu$ (CC) events are binned by m_T

Peak structure remains though smeared to lower peak height

Event generation

 $\sqrt{s} = 100 \,\mathrm{TeV}, \,\mathcal{L} = 30 \,\mathrm{ab}^{-1}$ for SM, binned by $m_{\mathrm{char}} = m_{\ell\ell}, \, m_T$

- MadGraph5_aMC@NLO : hard process @ NLO
- Pythia8 : parton shower (PS), hadronization
- Delphes3 : detector simulation

EWIMP effect is included by rescaling

$$N_{\rm SM+EWIMP} = \sum_{\rm events}^{N_{\rm SM}} \left[1 + \delta_{\sigma}^{ab}(\sqrt{s'}) \right]$$

Event generation in detail

EWIMP effect can be included with $\delta_{\sigma}^{ab}(m_{\ell\ell})$ Number of events \tilde{x}_i in *i*-th bin $m_{\ell\ell}^{\min} < m_{\ell\ell} < m_{\ell\ell}^{\max}$

For SM,

$$\tilde{x}_{i} = \sum_{\substack{m_{\ell\ell}^{\min} < m_{\ell\ell}^{obs} < m_{\ell\ell}^{\max}}} 1$$
For SM + EWIMP,

$$\tilde{x}_{i} = \sum_{\substack{m_{\ell\ell}^{\min} < m_{\ell\ell}^{obs} < m_{\ell\ell}^{\max}}} \left[1 + \delta_{\sigma}^{ab}(m_{\ell\ell}^{\text{true}}) \right]$$

Each event in SM data set has $\{m_{\ell\ell}^{obs}, m_{\ell\ell}^{true}, a, b\}$

- $m_{\ell\ell}^{\text{obs}}$: observed $m_{\ell\ell}$ from Delphes3 output
- $m_{\ell\ell}^{\text{true}}$: true $m_{\ell\ell}$ from MadGraph5_aMC@NLO output
- *a*, *b* : initial partons from MadGraph5_aMC@NLO output
- * Detector effect causes $m_{\ell\ell}^{\rm obs} \neq m_{\ell\ell}^{\rm true}$

$$x_i(\mu) \equiv \sum_{\text{events}} \left[1 + \mu \, \delta^{ab}_{\sigma}(m_{\text{char}}) \right] \; ; \; \tilde{x}_i(\theta, \mu) \equiv x_i(\mu) f_i(\theta)$$

Definition of q_0 in fitting based analysis

$$q_0 = -2 \ln \frac{L(\check{\boldsymbol{x}}; \hat{\boldsymbol{\theta}}, \boldsymbol{\mu} = \boldsymbol{0})}{L(\check{\boldsymbol{x}}; \hat{\boldsymbol{\theta}}, \hat{\boldsymbol{\mu}})} \sim \chi^2(1)$$
$$L(\check{\boldsymbol{x}}; \boldsymbol{\theta}, \boldsymbol{\mu}) \equiv \prod_i \exp \left[-\frac{(\check{x}_i - \tilde{x}_i(\boldsymbol{\theta}, \boldsymbol{\mu}))^2}{2\tilde{x}_i(\boldsymbol{\theta}, \boldsymbol{\mu})} \right] \prod_{\alpha} \exp \left[-\frac{\theta_{\alpha}^2}{2\sigma_{\alpha}^2} \right]$$

 $\hat{\hat{\boldsymbol{\theta}}} \text{ maximizes numerator } L(\check{\boldsymbol{x}}; \hat{\hat{\boldsymbol{\theta}}}, \mu = 0)$ $\{ \hat{\boldsymbol{\theta}}, \hat{\mu} \} \text{ maximizes denominator } L(\check{\boldsymbol{x}}; \hat{\boldsymbol{\theta}}, \hat{\mu})$

Within our analysis, $\check{x} = x_i(\mu = 1)$ and $\{\hat{\theta}, \hat{\mu}\} = \{0, 1\}$ with $L(\check{x}; \hat{\theta}, \hat{\mu}) = 1$ Wilk '38

Statistical treatment : (I) Fit systematic errors

Consider number of events in *i*-th bin of $m_{\text{char}} = m_{\ell\ell}$ or m_T

- $y = \{y_i\}$: prediction for SM · · · deformed $\tilde{y}_i(\theta) \equiv y_i f_{\text{sys},i}(\theta)$
- $-\check{\boldsymbol{y}} = \{\check{y}_i\}$: data with one of errors included

List of errors considered

- \bullet Luminosity $\pm 5\%$
- Beam energy $\pm 1\%$
- Renormalization scale 2Q, Q/2
- Factorization scale 2Q, Q/2
- PDF choice (101 variants of NNPDF2.3QED $\alpha_s(M_Z) = 0.118$)

Perform chi-squared fit and evaluate

$$\chi^2 = \min_{\boldsymbol{\theta}} \sum_{i:\text{bin}} \frac{(\check{y}_i - \tilde{y}_i(\boldsymbol{\theta}))^2}{\tilde{y}_i(\boldsymbol{\theta})}$$

Statistical treatment : (II) Fit result and σ

All errors fitted well : Best fit values for $\ell\ell$ (NC)

Sources of systematic errors	θ_1	θ_2	θ_3	$ heta_4$	θ_5
Luminosity: $\pm 5\%$	0.07	0	0	0	0
Beam energy: $\pm 1\%$	negligible				
Renormalization scale: $2Q, Q/2$	0.6	0.9	0.4	0.08	0.006
Factorization scale: $2Q, Q/2$	0.5	0.7	0.3	0.07	0.007
PDF choice	0.4	0.7	0.3	0.06	0.004
Total	0.9	1.3	0.5	0.1	0.01

Each value can be interpreted as possible size of $|\theta|$ within SM Let's call them as " σ " · · · deviation of $|\theta|$ from 0 Assuming each source is independent, take squared sum :

$$\sigma_{\alpha}^{\text{total}} = \sqrt{(\sigma_{\alpha}^{\text{lumi.}})^2 + (\sigma_{\alpha}^{\text{ren.}})^2 + (\sigma_{\alpha}^{\text{fac.}})^2 + (\sigma_{\alpha}^{\text{PDF}})^2}$$

Statistical treatment : (III) profile likelihood method

<u>Fit function</u>

$$\begin{aligned} f_{\text{sys},i}(\boldsymbol{\theta}) &= e^{\theta_1} (1 + \theta_2 p_i) p_i^{(\theta_3 + \theta_4 \ln p_i + \theta_5 \ln^2 p_i)} \\ p_i &= 2m_{\text{char},i} / \sqrt{s} \end{aligned}$$

Definition of test statistic q_0

 q_0 tests validity of SM and obeys $\chi^2(1)$

Wilk '38

Comparison with other approaches

Higgsino production at $\sqrt{s} = 100 \text{ TeV}, \mathcal{L} = 30 \text{ ab}^{-1}$

indirect study

Probe $m_{\tilde{H}} < 850 \,\text{GeV} (1.7 \,\text{TeV})$ at 5σ (95% C.L.) level • mono-jet search

Our method provides

- comparable reach for pure Higgsino
- better for short lifetime Higgsino

Disappearing track search of Wino

Other sources of systematic errors

Smooth correction seems to be well absorbed into $\boldsymbol{\theta}$: Then,

• estimation error in detector effect

may also be absorbed : our method can be applied!!

- higher order loop effect within SM
- background process

in principle possible to take account of (future task)

Yet remaining sources:

- pile-up effect
- underlying event

negligible thanks to clean signal with two energetic leptons

Statistical treatment for properties determination

Fix $\mu = 1$ (SM+EWIMP) and consider (m, C_1, C_2) dependence

$$x_i(m, C_1, C_2) \equiv \sum_{\text{events}} \left[1 + \delta^{ab}_{\sigma}(m, C_1, C_2; \sqrt{s'}) \right]$$

Assume \check{x} for 1.1 TeV Higgsino as example:

$$\check{x}_i = x_i (m = 1.1 \text{ TeV}, C_1 = 1, C_2 = 1)$$

Although still 3.5σ hint we try...

$$q(\boldsymbol{m}, \boldsymbol{C_1}, \boldsymbol{C_2}) \equiv \min_{\boldsymbol{\theta}} \left[\sum_{i: \text{bin}} \frac{(\check{x}_i - \tilde{x}_i(\boldsymbol{\theta}, \boldsymbol{m}, \boldsymbol{C_1}, \boldsymbol{C_2}))^2}{\tilde{x}_i(\boldsymbol{\theta}, \boldsymbol{m}, \boldsymbol{C_1}, \boldsymbol{C_2})} + \sum_{\alpha=1}^5 \frac{\theta_{\alpha}^2}{\sigma_{\alpha}^2} \right]$$

q tests validity of model (m, C_1, C_2)

Determination of spin

Solid (Dotted) : 2σ (1σ)

– Best fit:

 $(m, C_1, C_2) = (920 \,\mathrm{GeV}, 0, 1.2)$

- Bosonic EWIMP allowed
- For lighter (e.g. m = 800 GeV) Higgsino, only fermion allowed