DM Predictions from the LHC

Sven Heinemeyer, IFT/IFCA (CSIC, Madrid/Santander)

Corpus Cristi, 05/2019

1. Introduction & Models
2. Results in SUSY GUT models
3. Results in the pMSSM11
4. Results in non-SUSY models
5. Conclusions
1. Introduction & Models

GUT based models:

1.) CMSSM: \(m_0, m_{1/2}, A_0, \tan \beta, \text{sign} \mu \)

2.) NUHM1: CMSSM + 1 scalar mass parameter
 \(m_0, m_{1/2}, A_0, \tan \beta, \text{sign} \mu \) and \(M_A \)

3.) NUHM2: CMSSM + 2 scalar mass parameters
 \(m_0, m_{1/2}, A_0, \tan \beta, \mu \) and \(M_A \)

4.) SU(5): CMSSM + 3 scalar mass parameters
 \(m_5, m_{10}, m_{1/2}, A_0, \tan \beta, m_{H_u}, m_{H_d} \)

5.) mAMSB: different mechanism for SUSY breaking
 \(m_{3/2}, m_0, \tan \beta, \text{sign} (\mu) \)

6.) sub-GUT: CMSSM, but unification at lower scale
 \(m_0, m_{1/2}, A_0, \tan \beta, \text{sign} \mu \) and \(M_{\text{in}} \)

7.) ...

\(\Rightarrow \) wide variety of models covered!
Problem: We cannot be sure about the SUSY-breaking mechanism

⇒ it is possible that with the **CMSSM, NUHM, SU(5), mAMSB, sub-GUT** we missed the “correct” mechanism

⇒ hint: strong connection between colored and uncolored sector
tension between low-energy EW effects and (colored) LHC searches
Problem: We cannot be sure about the SUSY-breaking mechanism

⇒ it is possible that with the CMSSM, NUHM, SU(5), mAMSB, sub-GUT we missed the "correct" mechanism

⇒ hint: strong connection between colored and uncolored sector
tension between low-energy EW effects and (colored) LHC searches

Solution: investigate also the "general MSSM"

⇒ 11 parameters are manageable ⇒ pMSSM11

– squark mass parameters: $m_{\tilde{q}_{1,2}} =: m_{\tilde{q}}$, $m_{\tilde{q}_3}$
– slepton mass parameter(s): $m_{\tilde{l}}$, $m_{\tilde{\tau}}$
– gaugino masses: M_1, M_2, M_3
– trilinear coupling: A
– Higgs sector parameters: M_A, $\tan \beta$
– Higgs mixing parameter: μ
What if we still did not get it right?

- low-energy model different?
- richer SUSY structure?
- no SUSY model? ⇒ not really realistic!
What if we still did not get it right?

- low-energy model different?
- richer SUSY structure?
- no SUSY model? ⇒ not really realistic!

Lagrangian according to LHC-DM-WG recommendation:

- We consider DMSMs with a spin-1 (Y_1) s-channel mediator.
- The dark matter candidate is a Dirac fermion (X_D).
- We use the model files provided by the DMSIMP package for our implementation.

Spin-1 mediator

- Interaction Lagrangian mediator-DM
 \[\mathcal{L}_{X_D}^{Y_1} = X_D \gamma_\mu \left(g_{X_D}^V + g_{X_D}^A \gamma_5 \right) X_D Y_1^\mu. \]
- Interaction Lagrangian mediator-quarks
 \[\mathcal{L}_{\text{quarks}}^{Y_1} = \sum_{i,j} \left[d_{i,j} \gamma_\mu \left(g_{d_{i,j}}^V + g_{d_{i,j}}^A \gamma_5 \right) d_j + \bar{u}_{i,j} \gamma_\mu \left(g_{u_{i,j}}^V + g_{u_{i,j}}^A \gamma_5 \right) u_j \right] Y_1^\mu. \]
- Interaction Lagrangian mediator-leptons
 \[\mathcal{L}_{\text{leptons}}^{Y_1} = \sum_{i,j} \left[\bar{l}_{i,j} \gamma_\mu \left(g_{l_{i,j}}^V + g_{l_{i,j}}^A \gamma_5 \right) l_j \right] Y_1^\mu. \]

Scenarios

- Leptophobic, $g_{l_{i,j}}^V = g_{l_{i,j}}^A = 0$ (no constraints from dilepton searches).
- Flavor diagonal, $g_{u/d_{i,j}}^V/A = 0$ if $i \neq j$.
- Flavor blind, $g_{u/d_{i,j}}^V/A = g_{d_{i,j}}^V/A$.

1. $g_{X_D}^V \equiv g_{DM}$, $g_{X_D}^V = 0$
 $g_{u/d}^V \equiv g_{SM}$, $g_{u/d}^V = 0$.
 pure vector.

2. $g_{X_D}^V = 0$, $g_{X_D}^V \equiv g_{DM}$
 $g_{u/d}^A = 0$, $g_{u/d}^A \equiv g_{SM}$.
 pure axial-vector.

[taken from E. Bagnaschi]
Our tool: **Mastercode**

⇒ collaborative effort of theorists and experimentalists

Bagnaschi, Borsato, Buchmüller, Chobanova, Citron, Costa, De Roeck, Dolan, Ellis, Flächer, Hahn, SH, Isidori, Lucio, Martinez Santos, Olive, Trifa, Sakurai, Weiglein

Über-code for the combination of different tools:

− Über-code original in Fortran, now re-written in C++
− tools are included as subroutines
− compatibility ensured by collaboration of
 authors of “MasterCode” and authors of “sub tools” /SLHA(2)
− sub-codes in Fortran or C++

⇒ evaluate observables of one parameter point consistently with various tools

[Link to Mastercode website](https://cern.ch/mastercode)
Data we have:

- Higgs boson mass/couplings/... (LHC) \Rightarrow FeynHiggs
Data we have:

- Higgs boson mass/couplings/\ldots (LHC) ⇒ FeynHiggs
- Higgs boson signal strengths (LHC) ⇒ HiggsSignals
Data we have:

- Higgs boson mass/couplings/... (LHC) ⇒ FeynHiggs
- Higgs boson signal strengths (LHC) ⇒ HiggsSignals
- Higgs boson exclusion bounds (LHC, Tevatron, LEP) ⇒ HiggsBounds
Data we have:

- Higgs boson mass/couplings/... (LHC) ⇒ FeynHiggs
- Higgs boson signal strengths (LHC) ⇒ HiggsSignals
- Higgs boson exclusion bounds (LHC, Tevatron, LEP) ⇒ HiggsBounds
- SUSY / di-jet /mono-jet searches (LHC) ⇒ own re-cast
Data we have:

- Higgs boson mass/couplings/. . . (LHC) ⇒ FeynHiggs
- Higgs boson signal strengths (LHC) ⇒ HiggsSignals
- Higgs boson exclusion bounds (LHC, Tevatron, LEP) ⇒ HiggsBounds
- SUSY / di-jet /mono-jet searches (LHC) ⇒ own re-cast
- electroweak precision data ⇒ FeynWZ, FeynHiggs
- flavor data ⇒ SuperIso, SuFla
- astrophysical data (DM properties) ⇒ MicrOMEGAs, SSARD
The χ^2 evaluation:

\[\chi^2 = \sum_i^{N_{\text{meas}}} \left(\frac{P_i - \mu_i}{\sigma_i} \right) \]
2. Results in SUSY GUT models

Results in the CMSSM, NUHM1, NUHM2

\Rightarrow only very large values are favored

Sven Heinemeyer, SUSY 19, Corpus Cristi, 21.05.2019
σ_p^{SI} incl. 20/fb of LHC data

σ_p^{SI} \[2014\]

⇒ only very small values are favored

Sven Heinemeyer, SUSY 19, Corpus Cristi, 21.05.2019
MSSM DM prediction

Direct detection: past-present-future

Red circle is meant to represent predictions from SUSY. Let’s see what our models say.
MSSM DM prediction

Future searches would significantly probe the CMSSM

Sven Heinemeyer, SUSY 19, Corpus Cristi, 21.05.2019
Some of the parameter space of the NUHM1 is beyond the intrinsic background from atmospheric neutrinos.

MSSM DM prediction
All these GUT-models are indeed within the red blob. So what about the pMSSM10?
Results in the SU(5)

Dark Matter annihilation mechanism:

\[2016 \Rightarrow \tilde{\nu}_R/\tilde{c}_R/\tilde{\tau} \text{ co-annihilation possible} \]
Dark Matter Direct Detection prospects:

\[\sigma_{p}^{SI} \left[\text{cm}^2 \right] \]

\[m_{\tilde{\chi}_1^0} \left[\text{GeV} \right] \]

- $\tilde{\tau}$ coann.
- $\tilde{\tau}_1$ coann. + H/A
- $\tilde{\chi}_1^{\pm}$ coann.
- A/H funnel
- $\tilde{\nu}_\tau$ coann.
- $\tilde{\nu}_R/\tilde{c}_R$ coann.

Sven Heinemeyer, SUSY 19, Corpus Cristi, 21.05.2019
Results in the mAMSB

Known fact: Dark Matter requirement restricts $m_{3/2}$:

\Rightarrow no Sommerfeld enhancement

[2016]
Results in the mAMSB

Known fact: **Dark Matter requirement restricts** $m_{3/2}$:

\Rightarrow with Sommerfeld enhancement \Rightarrow shift to higher $m_{3/2}$
Dark Matter composition:

$\Rightarrow m_{\tilde{\chi}^0_1} \sim 2.9 \pm 0.1 \text{ TeV (wino), } \sim 1.1 \pm 0.02 \text{ TeV (higgsino)}$
Dark Matter Direct Detection prospects:

\[\sigma_p^{SI} \left[\text{cm}^2 \right] \]

- mAMSB: \(\tilde{W} \) best fit, \(\tilde{H} \) best fit, 1\(\sigma \), 2\(\sigma \)
- LSP composition: \(\tilde{W} \), Mixed, \(\tilde{H} \)

\(\mu > 0, \Omega_{\chi_1^0} = \Omega_{\text{CDM}} \)

\[m_{\chi_1^0} \left[\text{GeV} \right] \]

Sven Heinemeyer, SUSY 19, Corpus Cristi, 21.05.2019
Results in sub-GUT

\[\Rightarrow \text{many DM mechanisms possible} \]
\[\Rightarrow \text{low } M_{\text{in}} \text{ possible/favored} \]
Dark Matter Direct Detection prospects:

σ_{SI}^p: good prospects, all above the neutrino floor

σ_{SD}^p: unclear prospects, best-fit regions below the neutrino floor

Sven Heinemeyer, SUSY 19, Corpus Cristi, 21.05.2019
3. Results in the pMSSM11

DM mass: pMSSM10 vs. GUT based models prediction:

⇒ pMSSM10 predicts much lower DM mass than GUT-based models
3. Results in the pMSSM11

DM mass: similar in the pMSSM11:

⇒ pMSSM11 predicts much lower DM mass than GUT-based models
pMSSM prediction: \(m_{\tilde{\chi}_1^0} \) vs. \(\sigma_{p}^{SI} \):

⇒ best-fit point covered by future experiments
⇒ but very low cross sections possible at 1σ, below neutrino floor
pMSSM prediction: $m_{\tilde{\chi}_1^0}$ vs. σ_p^{SD}:

\Rightarrow slim prospects for future experiments

\Rightarrow large regions allowed at 1σ, below neutrino floor
4. Results in non-SUSY models

\[\Rightarrow \text{SM + Dirac DM + Leptophobic spin-1 mediator} \]

Lagrangian according to LHC-DM-WG recommendation:

- We consider DMSMs with a spin-1 (\(Y_1 \)) s-channel mediator.
- The dark matter candidate is a Dirac fermion (\(X_D \)).
- We use the model files provided by the DMSIMP package for our implementation.

Spin-1 mediator

- Interaction Lagrangian mediator-DM
 \[\mathcal{L}_{X_D}^Y = X_D \gamma_\mu \left(g_{X_D}^Y + g_{X_D}^A \gamma_5 \right) X_D Y_1^\mu. \]
- Interaction Lagrangian mediator-quarks
 \[\mathcal{L}_{\text{quarks}}^Y = \sum_{i,j} \left[d_i \gamma_\mu \left(g_{d_{i,j}}^Y + g_{d_{i,j}}^A \gamma_5 \right) d_j \right. \]
 \[\left. + \bar{u}_i \gamma_\mu \left(g_{u_{i,j}}^Y + g_{u_{i,j}}^A \gamma_5 \right) u_j \right] Y_1^\mu. \]
- Interaction Lagrangian mediator-leptons
 \[\mathcal{L}_{\text{leptons}}^Y = \sum_{i,j} \left[\bar{l}_i \gamma_\mu \left(g_{l_{i,j}}^Y + g_{l_{i,j}}^A \gamma_5 \right) l_j \right] Y_1^\mu. \]

Scenarios

- Leptophobic, \(g_{l_{i,j}}^V = g_{l_{i,j}}^A = 0 \) (no constraints from dilepton searches).
- Flavor diagonal, \(g_{u/d_{i,j}}^V = 0 \) if \(i \neq j \).
- Flavor blind, \(g_{u/d_{i,j}}^A = g_{d_{i,j}}^A \).

1. \(g_{X_D}^V \equiv g_{DM} \quad g_{X_D}^V = 0 \)
 \(g_{u/d}^V \equiv g_{SM} \quad g_{u/d}^V = 0 \),
 pure vector.

2. \(g_{X_D}^V = 0 \quad g_{X_D}^V \equiv g_{DM} \)
 \(g_{u/d}^V = 0 \quad g_{u/d}^A \equiv g_{SM} \),
 pure axial-vector.

[taken from E. Bagnaschi]

Sven Heinemeyer, SUSY 19, Corpus Christi, 21.05.2019
MasterCode set-up:

- **Frequentist fitting** framework written in Python/Cython and C++
- **Multinest** algorithm is used to sample the parameter space
- **udocker** used for deployment

Scan ranges:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
<th># of Segments</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m_Y) (mediator)</td>
<td>((0.1, 5) \text{ TeV})</td>
<td>10</td>
</tr>
<tr>
<td>(m_\chi) (DM)</td>
<td>((0, 2.5) \text{ TeV})</td>
<td>8</td>
</tr>
<tr>
<td>(g_{SM})</td>
<td>((10^{-6}, \sqrt{4\pi}))</td>
<td>2</td>
</tr>
<tr>
<td>(g_{DM})</td>
<td>((10^{-6}, \sqrt{4\pi}))</td>
<td>2</td>
</tr>
<tr>
<td>Total # of segments</td>
<td></td>
<td>320</td>
</tr>
</tbody>
</table>
Constraints:

- **DM constraints: relic abundance**
 ⇒ full agreement with ATLAS/CMS results/implementations

- **DM constraints: direct detection**
 ⇒ LUX, Xenon1T, PANDAX, PICO60

- **Mono-jet constraints**
 ⇒ MC5 aMC(N)NLO, Fastlim approach

- **di-jet constraints**
 ⇒ MC5 aMC(N)NLO, Fastlim approach

→ details in the back-up
General Results

- Results for vector mediator model

- Results for axial-vector mediator model → back-up

- No restrictions on couplings or masses

- Color coding:
 - green: annihilation via t-channel χ exchange into pairs of mediator particles Y that subsequently decay into SM particles
 - yellow: rapid annihilation directly into SM particles via the s-channel Y resonance
Vector mediator (I):

⇒ clear separation between s- and t-channel
Vector mediator (II):

\Rightarrow large ranges allowed, t-channel only for $g_{DM} \gg g_{SM}$
⇒ mixed prospects, both for s- and t-channel case
Towards UV completions

So far no UV completion considered!
Towards UV completions

So far no UV completion considered!

In any UV completion the spin-one boson could be expected to have comparable couplings to SM and DM particles, modulo possible group-theoretical factors and mixing angles!

\[\frac{g_{\text{DM}}}{g_{\text{SM}}} = O(1) \]
Towards UV completions

So far no UV completion considered!

In any UV completion the spin-one boson could be expected to have comparable couplings to SM and DM particles, modulo possible group-theoretical factors and mixing angles!

\[
g_{\text{DM}} / g_{\text{SM}} = \mathcal{O}(1)
\]

\[
1/3 < g_{\text{DM}} / g_{\text{SM}} < 3
\]

⇒ dark yellow regions
⇒ s-channel favored!
Vector mediator: towards UV completions

⇒ mixed prospects for discovery

Sven Heinemeyer, SUSY 19, Corpus Cristi, 21.05.2019
Axial-vector mediator: towards UV completions

$\Rightarrow t$-channel can fully be probed, s-channel only partially
5. Conclusinos

- **SUSY** constrained: CMSSM, NUHM, SU(5), mAMSB, sub-GUT
 - **SUSY** general: pMSSM11, …

- Our tool: MasterCode: combination of all relevant data!

- **CMSSM, NUHM1, NUHM2**: $m_{\tilde{\chi}^0_1} \gtrsim 400$ GeV, neutrino floor
 - best-fit regions (mostly) above/at/below

- **SU(5)**: stau co-ann., but also $\tilde{u}_R/\tilde{c}_R/\tilde{\nu}_\tau$ co-ann. possible
 - $m_{\tilde{\chi}^0_1}$ as in CMSSM, NUHM1, NUHM2

- **mAMSB**: $m_{\tilde{\chi}^0_1} \sim 2.9 \pm 0.1$ TeV (wino), $\sim 1.1 \pm 0.02$ TeV (higgsino)
 - DD: wino at neutrino floor, higgsino tested by next round

- **pMSSM11**: $m_{\tilde{\chi}^0_1} \lesssim 500$ GeV; important: chargino co-annihilation
 - σ_p^{SI} partially cov. at future exp., σ_p^{SD} below neutrino floor

- **SM + Dirac DM + Leptophobic spin-1 mediator**
 \Rightarrow MasterCode approach: full fit of the model (no simplifying ass.)

- **Vector mediator**: s- and t-channel separated, mixed prospects for DD

- **Axialvector**: s- and t-channel continous, mixed prospects for DD

- **UV-completions**: $1/3 < g_{SM}/g_{DM} < 3$ \Rightarrow s-channel preferred
 \Rightarrow prospects for DD not improved
Further Questions?
The Minimal Supersymmetric Standard Model (MSSM)

Superpartners for Standard Model particles

Problem in the MSSM: more than 100 free parameters

Nobody(?) believes that a model describing nature has so many free parameters!
A. Unconstrained models (MSSM):
agnostic about how SUSY breaking is achieved
no particular SUSY breaking mechanism assumed, parameterization of possible soft SUSY-breaking terms
most general case:
⇒ 105 new parameters: masses, mixing angles, phases
⇒ no model missed (within the MSSM)
⇒ $\mathcal{O}(100)$ parameters difficult to handle

B. Constrained models:
CMSSM, NUHM1, NUHM2, SU(5), mAMSB, sub-GUT, . . . :
assumption on the scenario that achieves spontaneous SUSY breaking
⇒ prediction for soft SUSY-breaking terms
 in terms of small set of parameters
⇒ easy to handle
GUT based models: 1.) CMSSM (sometimes wrongly called mSUGRA):

⇒ Scenario characterized by

\[m_0, m_{1/2}, A_0, \tan \beta, \text{sign } \mu \]

\[m_0 : \text{universal scalar mass parameter} \]
\[m_{1/2} : \text{universal gaugino mass parameter} \]
\[A_0 : \text{universal trilinear coupling} \]
\[\tan \beta : \text{ratio of Higgs vacuum expectation values} \]
\[\text{sign}(\mu) : \text{sign of supersymmetric Higgs parameter} \]

⇒ particle spectra from renormalization group running to weak scale

⇒ Lightest SUSY particle (LSP) is the lightest neutralino ⇒ DM!
“Typical” CMSSM scenario (SPS 1a benchmark scenario):

Strong connection between all the sectors
GUT based models: 2.) NUHM1: (Non-universal Higgs mass model)

Assumption: no unification of scalar fermion and scalar Higgs parameter at the GUT scale

⇒ effectively M_A as free parameters at the EW scale

⇒ Scenario characterized by

$m_0, m_{1/2}, A_0, \tan \beta, \text{sign } \mu \text{ and } M_A$

GUT based models: 3.) NUHM2: (Non-universal Higgs mass model 2)

Assumption: no unification of scalar Higgs parameter at the GUT scale

⇒ effectively M_A and μ as free parameters at the EW scale

⇒ Scenario characterized by

$m_0, m_{1/2}, A_0, \tan \beta, \mu \text{ and } M_A$
GUT based models: 4.) SU(5) GUT:

Assumption I:
no unification of scalar Higgs parameter at the GUT scale
(⇒ effectively M_A and μ as free parameters at the EW scale)

Assumption II:

$$(q_L, u^c_L, e^c_L)_i \in 10_i, \ (\ell_L, d^c_L)_i \in \bar{5}_i$$

⇒ Scenario characterized by

$m_5, m_{10}, m_{1/2}, A_0, \tan \beta, m_{H_u}, m_{H_d}$
GUT based models: 5.) mAMSB:

mAMSB scenario characterized by

\[m_{3/2}, m_0, \tan \beta, \text{sign}(\mu) \]

\[m_{3/2} = \langle F \rangle/M_{\text{Planck}} \] overall scale of SUSY particle masses

\[m_0 \] phenomenological parameter: universal scalar mass term introduced in order to keep squares of slepton masses positive

typical feature: very small neutralino–chargino mass difference

\[\tilde{\chi}_1^\pm \rightarrow \tilde{\chi}_1^0 + \pi^\pm \] with very soft pions
GUT based models: 6.) sub-GUT:

Based on CMSSM with unification at $M_{\text{GUT}} \sim 2 \cdot 10^{16}$ GeV:

\[
\Rightarrow \text{Scenario characterized by}
\]

\[
m_0, m_{1/2}, A_0, \tan \beta, \text{sign } \mu
\]

Unification is assumed at $M_{\text{in}} \leq M_{\text{GUT}}$:

\[
\Rightarrow \text{Scenario characterized by}
\]

\[
M_{\text{in}}, m_0, m_{1/2}, A_0, \tan \beta, \text{sign } \mu
\]

Possible realization in “mirage unification”

warped extra dimensions

\[
\ldots
\]
Mechanisms for relic dark matter density fulfillment in the CMSSM

- CMSSM: best fit, 1σ, 2σ
- CMSSM (4 parameters)

- stau coann.
- H/A-funnel
- chargino coann.
- stop coann.

Sven Heinemeyer, SUSY 19, Corpus Cristi, 21.05.2019
CMSSM DM prediction

Mechanisms for relic dark matter density fulfillment in the CMSSM

CMSSM: best fit, 1σ, 2σ

(4 parameters)

stau coann. chargino coann.
H/A-funnel stop coann.

29/09/2014 Kees Jan de Vries; Mastercode; BSM fit workshop 2014
CMSSM DM prediction

Mechanisms for relic dark matter density fulfillment in the CMSSM

CMSSM (4 parameters)

Sven Heinemeyer, SUSY 19, Corpus Cristi, 21.05.2019
Mechanisms for relic dark matter density fulfillment in the NUHM1

\[m_{H_u}^2 = m_{H_d}^2 \neq m_0^2 \]

NUHM1 (5 parameters)

- stau coann.
- H/A-funnel
- chargino coann.
- stop coann.

Sven Heinemeyer, SUSY 19, Corpus Cristi, 21.05.2019
Mechanisms for relic dark matter density fulfillment in the NUHM1

NUHM1: best fit, 1σ, 2σ

(5 parameters)

stau coann.
H/A-funnel
chargino coann.
stop coann.
Mechanisms for relic dark matter density fulfillment in the NUHM1

$M_{H_u}^2 = M_{H_d}^2 \neq M_0^2$

NUHM1: best fit, 1σ, 2σ

NUHM1 (5 parameters)

Sven Heinemeyer, SUSY 19, Corpus Cristi, 21.05.2019
Mechanisms for relic dark matter density fulfillment in the NUHM2

- $m_{H_u}^2 \neq m_{H_d}^2 \neq m_0^2$

NUHM2 (6 parameters)

- stau coann.
- H/A-funnel
- stop coann.
- chargino coann.

29/09/2014

Kees Jan de Vries; Mastercode; BSM H. Workshop 2014

Sven Heinemeyer, SUSY 19, Corpus Cristi, 21.05.2019
Mechanisms for relic dark matter light in the NUHM2

NUHM2: best fit, 1σ, 2σ

NUHM2 (6 parameters)
Mechanisms for relic dark matter density fulfillment in the NUHM2

29/09/2014
Kees Jan de Vries; Mastercode; BSM R. Workshop 2014

Sven Heinemeyer, SUSY 19, Corpus Cristi, 21.05.2019
5. Conclusions

- **SUSY** is (still) the best-motivated BSM scenario
 - constrained models: CMSSM, NUHM, SU(5), mAMSB, sub-GUT
 - general models: pMSSM11, ...

- Our tool: **MasterCode**: combination of LHC searches, Higgs measurements, EWPO, BPO, CDM \(\Rightarrow \chi^2 \) evaluation

- Results wrt. neutrino floors:

<table>
<thead>
<tr>
<th>Model</th>
<th>Min. (\chi^2)/dof</th>
<th>(\chi^2)-prob. (p)</th>
<th>(\sigma_p^{SI})</th>
<th>(\sigma_p^{SD})</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMSSM</td>
<td>32.8/18</td>
<td>11%</td>
<td>2(\sigma)</td>
<td>–</td>
</tr>
<tr>
<td>NUHM1</td>
<td>31.1/23</td>
<td>12%</td>
<td>1(\sigma)</td>
<td>–</td>
</tr>
<tr>
<td>NUHM2</td>
<td>30.3/22</td>
<td>11%</td>
<td>1(\sigma)</td>
<td>–</td>
</tr>
<tr>
<td>SU(5)</td>
<td>32.4/23</td>
<td>9%</td>
<td>1(\sigma)</td>
<td>–</td>
</tr>
<tr>
<td>mAMSB</td>
<td>36.5/27</td>
<td>11%</td>
<td>2(\sigma)</td>
<td>–</td>
</tr>
<tr>
<td>sub-GUT</td>
<td>28.9/24</td>
<td>23%</td>
<td>3(\sigma)</td>
<td>1(\sigma) part. below</td>
</tr>
<tr>
<td>pMSSM11</td>
<td>22.1/20</td>
<td>33%</td>
<td>3(\sigma)</td>
<td>1(\sigma) part. below</td>
</tr>
</tbody>
</table>
DM constraints:

⇒ micrOMEGAs for relic density and DD cross sections

⇒ full agreement with ATLAS/CMS results (here: vector model)
Non-LHC constraints

Dark matter

- Relic density constraints from Planck.
- Direct detection constraints on σ_p^{SI} from LUX, XENON1T and PANDAX.
- Direct detection constraints on σ_p^{SD} from PICO60.

[taken from E. Bagnaschi]

Sven Heinemeyer, SUSY 19, Corpus Christi, 21.05.2019
Mono-jet constraints

⇒ MG5 aMC(N)LO, Fastlim approach

⇒ full agreement with ATLAS/CMS (red-dashed)
Di-jet constraints

⇒ MG5 aMC(N)LO, Fastlim approach

⇒ full agreement with ATLAS/CMS
Axial-vector mediator (I):

\[m_Y \text{ [GeV]} \quad m_\chi \text{ [GeV]} \]

\[\Rightarrow \text{ Larger } s\text{-channel region, continuous with } t\text{-channel} \]
Axial-vector mediator (II):

$\Rightarrow t$- (s-)channel for $g_{SM} \lesssim (\gtrsim) 10^{-2}$
Axial-vector mediator (III):

⇒ will not be easy for PICO!
Axial-vector mediator (III):

⇒ neither for LZ!