IR fixed point pattern of couplings in the MSSM+1VF

with N. McGinnis, arXiv:1812.05240
and other papers with N. McGinnis, E. Lunghi and S. Shin

Radovan Dermisek
Indiana University, Bloomington

SUSY 2019, Corpus Christi, May 22, 2019
Standard model

Out of 17 dimensionless parameters:

\[\alpha_1, \alpha_2, \alpha_3, y_t, y_b, y_\tau, \lambda_h \]

only 7 couplings are sizable

all others = 0 (in the first approximation)
In the MSSM+1VF

the values of all large couplings:

\[\alpha_1, \alpha_2, \alpha_3, y_t, y_b, y_\tau, \lambda_h \]

can be understood from the IR fixed point structure of renormalization group equations
MSSM with a complete vectorlike family

We add to the MSSM:

\[Q, \bar{U}, \bar{D}, L, \bar{E} + \bar{Q}, U, D, \bar{L}, E \]

or \[16 + \overline{16} \] in SO(10) language

We consider:

- unrelated gauge couplings at the GUT scale (fundamental scale)
- unrelated Yukawa couplings at the GUT scale:
- universal Yukawa c. of vectorlike fields at the GUT scale: \(Y_V \)
- common scale for superpartners: \(M_{SUSY} \) (and zero A-terms)
- common scale for vectorlike matter: \(M_V \)

in this talk we identify the two scales: \(M_{SUSY} = M_V \equiv M \)
Big picture

GUT scale

$\sim 3 \times 10^{16}$ GeV

MSSM+1VF

few TeV

Random unrelated boundary conditions:

$\alpha_1(M_G), \alpha_2(M_G), \alpha_3(M_G) \in [0.1, 0.3]$

$y_t(M_G), y_b(M_G), y_{\tau}(M_G), Y_V(M_G) \in [1, 3]$

(larger values of couplings do not affect results significantly)

Higgs quartic given by gauge couplings at any scale:

$$\lambda_h(Q) \equiv \frac{g_2^2(Q) + (3/5)g_1^2(Q)}{4} \cos^2 2\beta$$

the plots assume: $\tan \beta = 40$
Big picture

GUT scale
\(\sim 3 \times 10^{16} \text{ GeV} \)

MSSM+1VF
few TeV

solid line are SM measured values evolved to a given scale, they include SUSY threshold corrections assuming \(\tan \beta = 40 \)

Distinctive pattern of couplings emerges
Big picture

GUT scale

\(\sim 3 \times 10^{16} \text{ GeV} \)

MSSM+1VF

few TeV

SM

EW scale

GUT: Random boundary conditions

EW: familiar pattern of couplings and masses
Predicted pattern of gauge couplings

In the MSSM+1VF:

\[\alpha_1(M_G), \alpha_2(M_G), \alpha_3(M_G) \in [0.1, 0.3] \]

\[M_G = 3.5 \times 10^{16} \text{ GeV}, \ M = 7 \text{ TeV} \quad \text{and} \quad \tan \beta = 40 \]

\[\text{--- --- universal b.c.} \quad \text{--- ---} \quad \text{M optimized for } \alpha_3 \]

\[20\% \text{ variations of } M \quad \text{--- ---} \quad \text{and all couplings} \quad \text{--- ---} \]

\[\alpha_i^{-1}(Q) = \frac{b_i}{2\pi} \ln \frac{M_G}{Q} + \alpha_i^{-1}(M_G) \]
Evolution of top, bottom and tau Y.c.

In the MSSM+1VF:

common IR fixed points remain good approximations for a large range of boundary conditions

very effective IR fixed point behavior
Predicted pattern of fermion masses

In the MSSM+1VF:

\[\alpha_1(M_G), \alpha_2(M_G), \alpha_3(M_G) \in [0.1, 0.3], \ y_t(M_G), y_b(M_G), y_\tau(M_G), Y_V(M_G) \in [1.3] \]

\[M_G = 3.5 \times 10^{16} \text{ GeV}, \ M = 7 \text{ TeV} \text{ and } \tan \beta = 40 \]

- - - universal b.c. \quad \text{\textcolor{orange}{\quad Y_V optimized for m_t}}

20% variations of M and all couplings

SUSY corrections at M assume all superpartners at the same scale, zero A-terms and $\mu = -\sqrt{2}M_{\text{SUSY}}$ for top-bottom-tau Yukawa c. unification, see the talk of N. McGinnis
In the MSSM+1VF

For large range of b.c. there is a narrow range of M within which all the couplings in the MSSM+1VF meet the corresponding parameters in the SM:
Optimizing parameters related to scales

For random unrelated (or unified) parameters:

\[\alpha_1(M_G), \alpha_2(M_G), \alpha_3(M_G) \in [0.1,0.3] \]
\[y_t(M_G), y_b(M_G), y_\tau(M_G), Y_V(M_G) \in [1,3] \]

three parameters,

\[M_G, M, \tan \beta, \]

can be optimized so that none of the seven observables is more than 25% (or 15%) from the measured values.

Further optimizing \(Y_V \) to obtain the required overall scale of Yukawa couplings, all 7 observables are within 11% (or 7.5%) from their measured values.
Combined signatures of heavy Higgses and vectorlike fermions
Heavy Higgses in vectorlike quark decays

Large (QCD) production rates:

\[gg \rightarrow t_4 t_4 \]
\[t_4 \rightarrow H t , H^\pm b \]

\[gg \rightarrow b_4 b_4 \]
\[b_4 \rightarrow H b , H^\pm t \]

even tiny couplings that mix VQ with SM quarks make them decay, and decays through heavy Higgses easily dominate especially at large \(\tan \beta \)

close to 100% BRs to heavy Higgses, final states: 6t, 4t2b, 2t4b, 6b

Conclusions

In the MSSM+1VF with vectorlike matter and superpartners at a multi-TeV scale:

\[\alpha_1, \alpha_2, \alpha_3, y_t, y_b, y_\tau, \lambda_h \]

can be understood from the IR fixed point structure of the RGEs

- just one example, similar scenarios might have other interesting features and consequences
- 1st and 2nd generations? \(\rightarrow \) different models for fermion masses
- motivation for more complex UV embeddings besides simple SU(5) or SO(10), e.g. Pati-Salam, flipped SU(5), …
- part of the spectrum might be within the reach of LHC and combined signatures of heavy Higgses and VQ and VL are very promising