Partially composite supersymmetry

Andrew S. Miller

School of Physics and Astronomy University of Minnesota

Work in collaboration with Yusuf Buyukdag and Tony Gherghetta ([arXiv:1811.12388,](https://doi.org/10.1103/PhysRevD.99.035046) [arXiv:1811:08034](https://doi.org/10.1103/PhysRevD.99.055018))

SUSY 2019

Andrew S. Miller (UMN) **[Partially composite supersymmetry](#page-20-0)** SUSY 2019 1/16

イロト イ部 トイモト イモトー OQ

Motivation

 \triangleright Supersymmetry has numerous attractive theoretical features

- \blacktriangleright solution to hierarchy problem
- \blacktriangleright dark matter candidate
- \blacktriangleright gauge unification
- \blacktriangleright incorporation of gravity
- ▶ Current constraints on SUSY suggest split sparticle spectrum
	- ► LHC bounds suggest heavier superpartners (∼TeV scale)
	- ▶ 125 GeV Higgs requires \geq 10 TeV stops in the MSSM
	- \blacktriangleright Flavor-changing neutral currents (FCNCs) can be suppressed if masses of firstand second-generation sfermions are above ∼100 TeV
- In Yukawa couplings (fermion masses) in the standard model are parameters of the theory and span six orders of magnitude

 OQ

イロト イ何 トイヨト イヨト ニヨー

Partial compositeness

 \blacktriangleright For each SM fermion introduce an elementary chiral superfield Φ and supersymmetric composite operator $\mathcal O$ with linear mixing:

$$
\mathcal{L}_{\Phi} = [\Phi^{\dagger} \Phi]_D + \frac{1}{\Lambda_{\text{UV}}^{\delta - 1}} \left([\Phi \, \mathcal{O}^c]_F + \text{H.c.} \right) ,
$$

where δ is the anamalous dimension of $\mathcal O$

 \blacktriangleright Massless eigenstate is partially composite:

$$
|\Phi_0\rangle \simeq \mathcal{N}_{\Phi}\left\{|\Phi\rangle - \frac{1}{g^{(1)}_\Phi\sqrt{\zeta_\Phi}}\sqrt{\frac{\delta-1}{\big(\frac{\Lambda_{IR}}{\Lambda_{UV}}\big)^{2(1-\delta)}-1}}\,|\Phi^{(1)}\rangle\right\}\,.
$$

 \triangleright δ > 1: mostly elementary

 \triangleright 0 \lt δ \lt 1: elementary-composite admixture

Andrew S. Miller (UMN) **[Partially composite supersymmetry](#page-0-0) Partially 2019** 3/16

イロト イ押 トイヨ トイヨト OQ

Fermion and sfermion spectra

 \blacktriangleright Elementary Higgs couples to elementary chiral fermions:

$$
y_{\psi} \simeq \begin{cases} \frac{\lambda}{\zeta_{\Phi}}(\delta-1)\frac{16\pi^2}{N} & \delta \ge 1 \text{ (mostly elementary)}\\ \frac{\lambda}{\zeta_{\Phi}}(1-\delta)\frac{16\pi^2}{N}\big(\frac{\Lambda_{\text{IR}}}{\Lambda_{\text{UV}}}\big)^{2(1-\delta)} & 0 \le \delta < 1 \text{ (admixture)} \end{cases}
$$

- \triangleright Anamalous dimension of the chiral superfields chosen to explain fermion mass hierarchy
- \triangleright Composite sector breaks supersymmetry (spurion X):

$$
\widetilde{m}^2 \simeq \begin{cases} \frac{(\delta-1)}{\zeta_{\Phi}} \frac{16\pi^2}{N} \frac{|\mathit{F_X}|^2}{\Lambda_{\text{IR}}^2} \big(\frac{\Lambda_{\text{IR}}}{\Lambda_{\text{UV}}}\big)^{2(\delta-1)} & \delta \geq 1 \text{ (mostly elementary)} \\ \frac{(1-\delta)}{\zeta_{\Phi}} \frac{16\pi^2}{N} \frac{|\mathit{F_X}|^2}{\Lambda_{\text{IR}}^2} & 0 \leq \delta < 1 \text{ (admixture)} \end{cases}
$$

 \blacktriangleright Inverted sfermion spectrum

イロト イ押 トイヨ トイヨト

Gravitational dual theory

Slice of AdS₅

We take a five-dimensional (5D) spacetime (x^μ,y) with AdS_5 (warped) metric

$$
ds^2 = e^{-2k|y|} \eta_{\mu\nu} \, dx^{\mu} \, dx^{\nu} + dy^2
$$

compactified $(-\pi R \le y \le \pi R)$ on a S^1/\mathbb{Z}_2 orbifold of radius R

 \triangleright The 5D spacetime is a slice of AdS₅ geometry, bounded by two 3-branes located at the orbifold fixed points $y = 0$ (UV brane) and $y = \pi R$ (IR brane)

AdS/CFT duality

 \triangleright Anamolous dimension of operators in 4D CFT is dual to localization of fields in AdS_{5} :

$$
\delta = |c + \frac{1}{2}|
$$

 \triangleright Warping extra dimension provides a natural way to explain hierarchies:

$$
\frac{\Lambda_{\rm IR}}{\Lambda_{\rm UV}} = e^{-\pi kR}
$$

イロト イ何 トイヨト イヨト 一ヨ OQ

Extradimensional setup

- \blacktriangleright The Higgs are confined to the UV brane
- \triangleright SUSY in broken on the IR brane
- \triangleright Gauge, gravity, and matter fields propagate in the bulk

 \blacktriangleright Higgs plus zero modes of the KK towers provide an effective MSSM

イ何ト イヨトイ $Q \sim$ Andrew S. Miller (UMN) **[Partially composite supersymmetry](#page-0-0)** SUSY 2019 6/16

Localization and the Yukawa hierarchy

4D effective Yukawa couplings arise from 5D couplings upon compactification

$$
S_5 = \int d^5x \sqrt{-g} \, Y_{ij}^{(5)} \left[\, \bar{\Psi}_{il}(x^{\mu}, y) \, \Psi_{jR}(x^{\mu}, y) + h.c. \right] H(x^{\mu}) \, \delta(y)
$$
\n
$$
\equiv \int d^4x \, \left[y_{ij} \, \bar{\psi}_{il}^{(0)}(x^{\mu}) \, \psi_{jR}^{(0)}(x^{\mu}) \, H(x^{\mu}) + h.c + \cdots \right]
$$

4D Yukawa couplings

$$
y_{ij} = Y_{ij}^{(5)} f_{\text{UV}}^{(0)}(c_L) f_{\text{UV}}^{(0)}(c_R)
$$

where c parameterizes the 5D fermion bulk mass

$$
m_\Psi = ck
$$

 $\left\{ \left\vert \left\langle \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\rangle \right\vert \left\langle \mathbf{q} \right\rangle \right\vert \left\langle \mathbf{q} \right\rangle \right\vert \left\langle \mathbf{q} \right\rangle \right\vert \left\langle \mathbf{q} \right\rangle \left\langle \mathbf{q} \right\rangle \right\vert$

4 17 18

 OQ

SUSY breaking

We assume SUSY is broken on the the IR brane, which we parametrize using the spurion field $X = \theta \theta F_X$

- ► Typical soft mass scale is $F/\Lambda_{\rm IR}$, where $F = F_X e^{-2\pi kR}$
- ► Gravitino LSP: $m_{3/2} \sim F/M_P$
- \triangleright Spurion coupling to sfermions depends on localization:

$$
S_5 \supset \int d^5x \sqrt{-g} \int d^4\theta \frac{X^{\dagger}X}{\Lambda_{\text{UV}}^2 k} \Phi^{\dagger} \Phi \delta(y - \pi R)
$$

such that the sfermions acquire **flavor-dependent** masses

$$
m_{\phi_{L,R}}^{\text{tree}} \simeq \left\{ \begin{array}{ll} (\pm c - \frac{1}{2})^{1/2} \frac{F}{\Lambda_{\text{IR}}} e^{(\frac{1}{2} + c) \pi k R} & \pm c > \frac{1}{2} \text{ (UV-localized)}\\ (\frac{1}{2} \mp c)^{1/2} \frac{F}{\Lambda_{\text{IR}}} & \pm c < \frac{1}{2} \text{ (IR-localized)} \end{array} \right.
$$

 \blacktriangleright Tree-level mass for UV-localized sfermions ($\pm c > 1/2$) is exponentially suppressed, so radiative corrections become dominant

 OQ

 $\mathcal{A} \cup \mathcal{A} \rightarrow \mathcal{A} \oplus \mathcal{A} \rightarrow \mathcal{A} \oplus \mathcal{A} \rightarrow \mathcal{A} \oplus \mathcal{A} \rightarrow \mathcal{A} \oplus \mathcal{A}$

SUSY breaking: sfermions

▶ UV-localized sfermion masses can be hierarchically suppressed below IR-localized sfermion masses

イロト イ部 トイミト イヨト OQ Ξ Andrew S. Miller (UMN) **[Partially composite supersymmetry](#page-0-0)** SUSY 2019 9/16

SUSY breaking: gauginos

If X is a singlet, it couples to the gauginos as:

$$
S_5 = \int d^5x \sqrt{-g} \int d^2\theta \left[\frac{1}{2} \frac{X}{\Lambda_{\rm UV} k} W^{\alpha a} W^a_{\alpha} + h.c. \right] \delta(y - \pi R)
$$

such that the gauginos acquire mass $M_\lambda \simeq g^2 \frac{F}{\Delta}$ $\Lambda_{\sf IR}$

If the SUSY-breaking sector contains no singlets with large F -terms, it couples to the gauginos as:

$$
S_5 = \int d^5x \sqrt{-g} \int d^2\theta \left[\frac{1}{2} \frac{X^{\dagger} X}{\Lambda_{\rm UV}^3 k} W^{\alpha a} W_{\alpha}^a + h.c. \right] \delta(y - \pi R)
$$

such that the gauginos acquire mass $M_\lambda \simeq g^2 \frac{F^2}{\Lambda^3}$ Λ_{IR}^3

K ロ > K @ > K 경 > K 경 > H 경

Spectrum cartoon

Parameter space A: singlet spurion

- \triangleright BBN: $\tau_{NLSP} \leq 0.1$ s
- \blacktriangleright collider limits: $m_{\widetilde{g}}, m_{\widetilde{t}_1} \gtrsim 1$ TeV
- **FCNCs**: $m_{\widetilde{\phi}_{1,2}} \gtrsim 100 \text{ TeV}$

Example 2 gauge unification: $|\mu| \leq 100$ TeV \blacktriangleright Higgs mass: $m_{\widetilde{Q}_3}, m_{\widetilde{u}_3} \lesssim 100 \text{ TeV}$ Structure formation: $m_{3/2} \gtrsim 1$ keV イロト イ部 トイモト イモト OQ Andrew S. Miller (UMN) **[Partially composite supersymmetry](#page-0-0)** SUSY 2019 12/16

Parameter space B: nonsinglet spurion

- \blacktriangleright collider limits: $m_{\widetilde{g}}, m_{\widetilde{t}_1} \gtrsim 1$ TeV
- \blacktriangleright FCNCs: $m_{\widetilde{\phi}_{1,2}} \gtrsim 100$ TeV
- \blacktriangleright gauge unification: $|\mu| \lesssim 100$ TeV
- \blacktriangleright Higgs mass: $m_{\widetilde{Q}_3}, m_{\widetilde{u}_3} \lesssim 100 \text{ TeV}$
- \blacktriangleright structure formation: $m_{3/2} \ge 1$ keV

イロト イ部 トイヨ トイヨト OQ Andrew S. Miller (UMN) **[Partially composite supersymmetry](#page-0-0)** SUSY 2019 13/16

Benchmark points

- \blacktriangleright For each point randomly sample over allowed sfermion localizations
- \blacktriangleright Pole mass spectrum: MSSM renormalization
- \blacktriangleright Higgs mass: EFT calculation
- \blacktriangleright Select points consistent with observed value $m_h = 125.18 \pm 0.16$ GeV and with all first- and second-generation sfermion m[ass](#page-12-0)[es](#page-14-0) [a](#page-12-0)[bo](#page-13-0)[ve](#page-14-0) [1](#page-0-0)[00](#page-20-0) [T](#page-0-0)[eV](#page-20-0) \equiv

 Ω

Pole mass spectrum

Andrew S. Miller (UMN) **[Partially composite supersymmetry](#page-0-0)** SUSY 2019 15/16

Conclusions

Partially composite supersymmetry

- ▶ Partial compositeness (localization) can explain SM fermion mass hierarchy
- \blacktriangleright In a supersymmetric model, this predicts split sfermion spectrum with inverted Yukawa ordering
	- \blacktriangleright 125 GeV Higgs mass
	- \blacktriangleright suppression of FCNCs
- \blacktriangleright Light gravitino dark matter
	- \blacktriangleright additional cosmological constraints (work in progress)
- \blacktriangleright Heavy first- and second-generation sfermions can be indirectly probed by flavor-violation experiments such as Mu2e (work in progress)
- \triangleright Distinctive stau or neutralino NLSP decays may be within reach of a future collider
- \triangleright Dual 4D and 5D descriptions

 OQ

イロト イ押 トイヨト イヨト 一国

イロト イタト イミト イミト ニミー りくぐ

Localization and the Yukawa hierarchy

$$
(\gamma_e)_{ij} = Y_{ij}^{(5)} f_{UV}^{(0)}(c_{L_i}) f_{UV}^{(0)}(c_{e_j})
$$

\n
$$
(\gamma_u)_{ij} = Y_{ij}^{(5)} f_{UV}^{(0)}(c_{Q_i}) f_{UV}^{(0)}(c_{u_j})
$$

\n
$$
(\gamma_d)_{ij} = Y_{ij}^{(5)} f_{UV}^{(0)}(c_{Q_i}) f_{UV}^{(0)}(c_{d_j})
$$

 $4\ \Box\ \rightarrow\ \ 4\ \overline{c} \overline{b}\ \rightarrow\ \ 4\ \overline{c}\ \rightarrow\ \ 4$ OQ Ξ Andrew S. Miller (UMN) **[Partially composite supersymmetry](#page-0-0)** SUSY 2019 17/16

SUSY breaking: Higgs sector

▶ The Higgs sector is protected from SUSY breaking at tree-level, but finite radiative corrections involving the bulk gauginos and sfermions induce soft terms at the 1-loop level

Andrew S. Miller (UMN) **[Partially composite supersymmetry](#page-0-0)** SUSY 2019 18/16

EWSB

 \blacktriangleright In the MSSM, the tree-level scalar potential has a minimum breaking electroweak symmetry if the following two equations are satisfied:

$$
m_{H_u}^2 + |\mu|^2 - b \cot \beta - \frac{1}{8} (g_1^2 + g_2^2) v^2 \cos 2\beta = 0
$$

$$
m_{H_d}^2 + |\mu|^2 - b \tan \beta + \frac{1}{8} (g_1^2 + g_2^2) v^2 \cos 2\beta = 0
$$

In our model, $m_{H_a}^2$, $m_{H_d}^2$, and b are radiatively generated at the IR-brane scale \blacktriangleright EWSB determines two parameters:

$$
\tan \beta \simeq \frac{(m_{H_d}^2 - m_{H_u}^2) + \sqrt{(m_{H_d}^2 - m_{H_u}^2)^2 + 4b^2}}{2b} + \mathcal{O}\left(\frac{v^2}{b}\right)
$$

$$
|\mu|^2 \simeq \frac{m_{H_d}^2 - m_{H_u}^2 \tan^2 \beta}{\tan^2 \beta - 1} + \mathcal{O}(v^2)
$$

► Solution only for sign $\mu = -1$; also prefers $m_{H_u}^2 < 0$ $m_{H_u}^2 < 0$ $m_{H_u}^2 < 0$

Gauge-eigenstate mass spectrum

 $4\ \Box\ \rightarrow\ \ 4\ \overline{c} \overline{b}\ \rightarrow\ \ 4\ \overline{c}\ \rightarrow\ \ 4$ OQ Andrew S. Miller (UMN) **[Partially composite supersymmetry](#page-0-0)** SUSY 2019 20/16