

b UNIVERSITÄT BERN

Searches for direct pair production of third generation squarks with the ATLAS detector

John Anders on behalf of the ATLAS collaboration

> University of Bern SUSY19

Introduction

3G SUSY motivations

• Introduction of a super partner for each SM particle

- May resolve unanswered questions from the SM:
 - Hierarchy problem
 - Nature of dark matter
 - Unification of fundamental forces at GUT scale

- Due to the role of the top-quark in loop-corrections to the Higgs mass, the superpartners of the 3rd generation quarks (the top-squark and bottom-squark) are of high importance
 - Depending upon the squark masses, they may be produced at an appreciable rate at the LHC

Introduction

The ATLAS detector

- Fantastic performance of both the LHC and the ATLAS detector for Run 2
- 139 fb⁻¹ of data collected, good for physics analysis, with an excellent data taking efficiency of > 95%
- Total average number of interactions per bunch crossing of 33.7

Mean Number of Interactions per Crossing

Overview

- Many new results focusing on complex sparticle decays, investigating difficult regions of the SUSY phase space, and reinterpreting SM measurements
- Search for top squarks in events with a Z-boson (139fb⁻¹)
- Search for 3-body decays of top squark pairs (139fb⁻¹)
- Measurement of top-quark pair spin correlations (36.1 fb⁻¹)
- Search for bottom squarks in final states containing Higgs bosons (139fb⁻¹)

Signal model targeted

- Search for top squarks in final states containing at least one Z-boson
- Two scenarios considered,
 - ${ ilde t}_1 o t { ilde \chi}_2^0$ with, ${ ilde \chi}_2^0 o Z/h { ilde \chi}_1^0$

 $\tilde{t}_2 \rightarrow Z \tilde{t}_1$ with, $\tilde{t}_1 \rightarrow b f f' \tilde{\chi}_1^0$, a new signature for ATLAS

 Final states with at least 3 leptons, containing a sameflavour opposite sign (SFOS) lepton pair in the Z-mass window

- SR_{1A} & SR_{1B}: \tilde{t}_1 model with either large (1A) or small (1B) $\Delta m(\tilde{\chi}_2^0, \tilde{\chi}_1^0)$
 - Requiring many jets, and at least one b-jet
- SR_{2A} & SR_{2B}: \tilde{t}_2 model with large (2A) or small (2B) $\Delta m(\tilde{\chi}_2^0, \tilde{\chi}_1^0)$
 - Requiring looser jet and, b-jet requirements, but high $\mathrm{E_{T}}^{\mathrm{miss}}$

Background estimation

• The dominant backgrounds for all regions of the analysis are $t\bar{t}Z$ and multi-boson production (predominantly WZ) with additional contributions from fake and non-prompt (FNP) leptons

- The dominant backgrounds are estimated in dedicated CRs (orthogonal to the SRs due to either the b-jet multiplicity, E_T^{miss} or lepton p_T requirements) and validated in orthogonal VRs
- The FNP background is estimated using the matrix method, and validated in dedicated VRs.
- The main systematic uncertainties arise from the modelling of the $t\bar{t}Z$ and diboson backgrounds

Results

ATLAS-CONF-2019-016

 No significant excesses are found in any of the SRs, and 95% CL limits are placed in both of the signal scenarios considered

Search for 3-body decays of top squark pairs

Signal model targeted

ATLAS-CONF-2019-017

• Search for top squarks $(\tilde{t}_1 \rightarrow t \tilde{\chi}_1^0)$ in final states with 1 lepton multiple jets and large E_T^{miss}

• A ML technique was developed to distinguish the top squark signal from the $t\bar{t}$ background

- The NN uses 13 inputs (such as: n_{jets} , n_{b-jets} , m_T , m_{bl}^{min} ...) to define the discriminator.
- The SR defined as a 1L high E_T^{miss} region, with many (≥ 4) jets, at least 1 b-jet and a selection on the output discriminator

Search for 3-body decays of top squark pairs

Background estimation

- The main background is di-leptonic $t\bar{t}$ where one lepton is "lost" (not reconstructed/identified) or a tau-lepton is present in one branch of the $t\bar{t}$ decay
- The background is estimated in a 1L CR, orthogonal to the SR due to the selection on the NN discriminator, and the modelling is validated in a VR, which is also orthogonal due to the selection on the discriminator
- The modelling of the $t\bar{t}$ background is the main uncertainty

Search for 3-body decays of top squark pairs

Results

ATLAS-CONF-2019-017

• No excesses above the post-fit background expectation are found. When performing the exclusion fit a multi-bin fit is used, with 10 bins for NN discriminator values between [0.65:1]

Measurement of top-quark pair spin correlations

Signal model targeted

- Reinterpretation of the SM dileptonic $t\bar{t}$ spin correlation measurement (36.1fb-1) in the context of $\tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$ decays
- Targets the uncovered region of the simplified model phase space, with small $\Delta m(\tilde{t}_1, \tilde{\chi}_1^0)$ and $m(\tilde{t}_1) \sim m(t)$

- For top-pair production, the leptons contain the parent spin information and are correlated
- For top squark pair production there is no correlation between the decay products

arXiv:1903.07570

Measurement of top-quark pair spin correlations

Results

arXiv:1903.07570

 A 2D fit is performed in Δφ and Δη, allowing both the SM tt
parameters to vary to fit the observed data

Search for bottom squarks in final states containing Higgs bosons

Signal model targeted

ATLAS-CONF-2019-011

• Search for bottom squark production with Higgs bosons in the final states, $\tilde{b}_1 \rightarrow b \tilde{\chi}_2^0$ with $\tilde{\chi}_2^0 \rightarrow h \tilde{\chi}_1^0$

- Two mass hierarchy assumptions are considered, either: $\Delta m(\tilde{\chi}_2^0, \tilde{\chi}_1^0)=130$ GeV or $m(\tilde{\chi}_1^0)=60$ GeV
- Final states containing OL, large E_T^{miss}, high jet and high b-jet multiplicity are considered

- SRA large $\Delta m(\tilde{b}_1, \tilde{\chi}_2^0)$ in both mass scenarios.
- SRB small $\Delta m(\tilde{b}_1, \tilde{\chi}_2^0)$ in the $\Delta m(\tilde{\chi}_2^0, \tilde{\chi}_1^0)$ =130GeV scenario
- SRC small $\Delta m(\tilde{b}_1, \tilde{\chi}_2^0)$ in the $m(\tilde{\chi}_1^0)$ =60GeV scenario
- Depending upon the SR, either higgs reconstruction algorithms, m_{eff} , or the Object-based E_T^{miss} significance are used.

Search for bottom squarks in final states containing Higgs bosons

Background estimation

ATLAS-CONF-2019-011

• The main background in the SRA and B regions is $t\bar{t}$ pair production, whilst in the SRC the main background is Z+jets with a sub-dominant contribution from $t\bar{t}$

- Three $t\bar{t}$ CRs are defined, orthogonal to the SRs due to the lepton multiplicity selection
- One Z+jets CR is defined, again orthogonal to the SRs due to the 2-lepton selection used
- The background modelling is subsequently validated in OL VRs.

Search for bottom squarks in final states containing Higgs bosons

Results

- No significant excesses over the post-fit SM expectations are found
- A multi-bin fit is performed in bins of the m_{eff} variable for the SRA region, and in bins of the E_T^{miss} significance variable for the SRC region
- The main uncertainty arises from the modelling of the $t\bar{t}$, and Z+jets backgrounds

Conclusion

Summary

- Presented a first look at the most recent full Run 2 3G SUSY results from ATLAS
- Unfortunately, no significant excesses above the SM yet!
- However many other searches are currently in progress and are approaching completion
- Stay tuned!

Appendix

Results

Measurement of top-quark pair spin correlations

SM-Only Fit

Parton level $\Delta \phi(\mathbf{I}^+, \mathbf{I})/\pi$ [rad/ π]

arXiv:1903.07570