Searches for supersymmetry in R-parity violating signatures at the LHC

Javier Montejo Berlingen

SUSY 2019, May 18th

Introduction

- We don't know what SUSY looks like \rightarrow leave no stone unturned
- The most general renormalizable, gauge-invariant superpotential **contains RPV terms**

$$W_{R_p} = \mu_i H_u L_i + rac{1}{2} \lambda_{ijk} L_i L_j E_k^c + \lambda'_{ijk} L_i Q_j D_k^c + rac{1}{2} \lambda''_{ijk} U_i^c D_j^c D_k^c ,$$

lepton-number violating

baryon-number violating

- RPV is a possible SUSY scenario, we should be looking for it
- In general combinations of lepton+baryon number violating couplings are highly constrained by proton and neutron decays
 - Limits on only lepton- or only baryon-number violating couplings are much weaker
 - Constrains on third generation couplings are generally much weaker
- RPV couplings make the LSP decay to SM, trade MET for more visible particles
- For small enough couplings and/or heavy mediating sparticles the LSP can become long-lived
 - This talk focuses only on prompt decay
 - Dedicated talks for long-lived scenarios:
 - Hidden Sectors and Long-Lived Particle Signatures
 - Searches for long-lived particles with the CMS detector
 - Search for long-lived SUSY decays CMS Experiment
 - Detecting hidden sector dark matter via long-lived stau decays

RPV searches at the LHC

- Extensive search program for RPV SUSY in both ATLAS and CMS, also inclusive searches with RPV interpretations
- Will discuss only a subset, covering the three trilinear couplings: LLE, LQD, UDD

• ATLAS

- Same-sign or three leptons (139 fb⁻¹) <u>ATLAS-CONF-2019-015</u> (see <u>Giordon's talk</u>)
- Displaced vertex + muon (136 fb⁻¹) <u>ATLAS-CONF-2019-006</u> (see <u>Hidetoshi's talk</u>)
- RPC to RPV reinterpretation (36.1 fb⁻¹) ATLAS-CONF-2018-003
- RPV all-hadronic (36.1 fb⁻¹) Phys. Lett. B 785 (2018) 136
- RPV four leptons (36.1 fb⁻¹) Phys. Rev. D 98 (2018) 032009
- Dijet pairs (36.1 fb⁻¹) Eur. Phys. J. C 78 (2018) 250
- Stop B-L (36.1 fb⁻¹) Phys. Rev. D 97 (2018) 032003
- RPV lepton + many jets (36.1 fb⁻¹) JHEP 09 (2017) 88

• CMS

- Same-sign or three leptons (137 fb⁻¹) <u>CMS-PAS-SUS-19-008</u> (see <u>Andrew's talk</u>)
- Resonant slepton (35.9 fb⁻¹) Eur. Phys. J. C 79 (2019) 305
- Displaced jets (35.9 fb⁻¹) Phys. Rev. D 99 (2019) 032011
- Tri-jet pairs (35.9 fb⁻¹) Phys. Rev. D 99 (2019) 012010
- Displaced vertex + jets (35.9 fb⁻¹) Phys. Rev. D 98 (2018) 092011
- RPV lepton + many jets (35.9 fb⁻¹) Phys. Lett. B 783 (2018) 114
- Dijet pairs (35.9 fb⁻¹) Phys. Rev. D 98 (2018) 112014
- RPV all-hadronic (38.2 fb⁻¹) Phys. Rev. Lett. 121 (2018) 141802

RPV four leptons, ATLAS

- Search for wino, slepton or gluino production with LSP decay via LLE coupling, to at least four leptons
- Three search channels with 0, 1 or 2 hadronic taus
- Sensitivity to all LLE couplings, interpret in the two extremes with most/least taus: $\lambda_{i33} / \lambda_{12k}$, (i,k \in 1,2)
- Background in 0-tau regions estimated from MC, dominated by prompt leptons (ZZ, ttZ, triboson)
- Background in 1- and 2-tau regions dominated by fake taus, estimated with data-driven method

Phys. Rev. D 98 (2018) 032009

RPV four leptons, ATLAS

Phys. Rev. D 98 (2018) 032009

- Reducible background estimated via fake-factor method
- Fake-factor extracted from simulation and corrected to data where possible
- FF split per lepton type (light/heavy flavour, gluon-jet, photon conversion), process (ttbar, Z+jets, ...) and binned in p_T, eta, and number of prongs for taus
- FF applied to data as a weighted average of lepton type and process fraction
- No significant excess observed, limits are set for each production mode for two couplings: λ_{i33} / $\lambda_{12k},$ (i,k \in 1,2)

Resonant slepton, CMS

- Search for resonant slepton production decaying to same-sign muons via λ'₂₁₁ (both production and decay)
- SR is binned in the 2D plane of m(μ₁μ₂+jets)≈m μ_L⁻/ν_μ and m(μ₂j₁j₂)≈m_{χ̃1}⁰
- Background dominated by diboson (W[±]W[±], WZ, ZZ) and fake leptons in the low mass bins (mainly ttbar with a muon from b-hadron decay)

Eur. Phys. J. C 79 (2019) 305

 $\lambda'_{ijk} L_i Q_j$

Resonant slepton, CMS

- WZ and ttZ normalised via a fit to the b-tag distribution in a 3-muon CR with $|m_{\mu\mu} m_Z| < 15$ GeV
- Fake muon contribution estimated with tight-to-loose ratio method
- Contribution from photon conversion taken from MC and validated in 3-muon CR with $|m_{\mu\mu\mu}$ $m_Z|{<}15~GeV$
- No significant excess is observed, limits are set on the cross section and on a modified cMSSM model with an additional λ'_{211} coupling

RPV all-hadronic, ATLAS

- Search for gluino production decaying to 3 or 5 jets via UDD coupling
 - gluino \rightarrow 3 jets
 - gluino \rightarrow 2 jets + LSP \rightarrow 5 jets
- Discriminant variable is sum of large-R jet masses: M_J^Σ
- Individual jet masses predicted by sampling a PDF
 - Build PDF in a control region (N_{jet} =3) as a function of jet p_T/eta/b-tagged
 - Sample PDF in signal region (N_{jet} \ge 4, N_{jet} \ge 5)
- Uncorrelated discriminating variable |Δη₁₂| used to enhance SR sensitivity and define validation regions

RPV all-hadronic, ATLAS

- A systematic uncertainty on the method is derived by looking at the closure in extreme regions of phase space
- No significant excess is observed, and limits are set on the two simplified models

- At high gluino masses (>700 GeV), trigger on H_T and H_T +jets
- Hard to trigger at low gluino masses, uses data-scouting technique: store only HLT-reconstructed objects. Allows much higher trigger rate by recording smaller event size
- Strategy: fit jet-triplet mass distribution, using all jet triplet combinations out of the 6 leading jets (20 triplets)
- Sensitivity improved by using **Dalitz variables**

 $\frac{1}{2}\lambda''_{ijk}U^c_iD^c_jD^c_k$

Phys. Rev. D 99 (2019) 012010

- Sensitivity enhanced building new Dalitz variables:
 - 3 per dijet permutation $\hat{m}(3,2)_{ij}^2 = \frac{m_{ij}^2}{m_{ijk}^2 + m_i^2 + m_j^2 + m_k^2}$
 - 1 per triplet $D_{[3,2]}^2 = \sum_{i>j} \left(\hat{m}(3,2)_{ij} \frac{1}{\sqrt{3}} \right)^2$
 - 20 per triplet permutation in the event

$$\hat{m}(6,3)_{ijk}^{2} = \frac{m_{ijk}^{2}}{4 m_{ijklmn}^{2} + 6 \sum_{i} m_{i}^{2}}$$
$$m_{ijk} < |p_{\rm T}|_{ijk} - \Delta$$

• 10 per triplet-pair permutation in the event A_m

$$A_m = \frac{|m_{ijk} - m_{lmn}|}{m_{ijk} + m_{lmn}}$$

• 1 per event

$$D^{2}_{[(6,3)+(3,2)]} = \sum_{i < j < k} \left(\sqrt{\hat{m}(6,3)^{2}_{ijk} + D^{2}_{[3,2],ijk}} - \frac{1}{\sqrt{20}} \right)^{2}$$

Javier Montejo Berlingen

Phys. Rev. D 99 (2019) 012010

Phys. Rev. D 99 (2019) 012010

- Fit jet-triplet mass distribution with analytic function, using all jet triplet combinations that pass the triplet and event selections
- Correction and uncertainties in the regions using data-scouting are derived by fitting the hadronic top mass
 - ttbar simulation needs to be smeared and shifted to match data, same correction applied to signal.
- No significant excess observed, set limits on the production of three-jet resonances

 Reinterpret RPC and RPV analyses in models with variable RPV coupling, rich phenomenology:
 RPC → long-lived → prompt with cascade to LSP → prompt with direct decay

• Searches that don't exploit displaced objects can retain good sensitivity to moderate lifetimes (especially without leptons)

- Nice coverage and complementarity between RPC and RPV searches
- In some cases dedicated long-lived searches are needed to bridge the gaps
- 3000 n(ĝ) [GeV] ATLAS Preliminary 2800 RPC ≥ 3 b-jets √s=13 TeV, 36.1 fb⁻¹ RPC 0L 7-11j 2600 Model with **gluino** \rightarrow **tt** $\tilde{\chi}_1^0$ (\rightarrow tbs via λ''_{323}) is • -
 - Expected **RPV 1L** 2400 Observed **RPC-RPV SS/3L** covered over the full RPV coupling range 95% CL limits 2200⊢ Exclusion limit drops by ~400 GeV in the 2000 $\tau_{\tilde{\chi}_1^0} \approx 1-10$ ns lifetime regime 1800E 1600 1400⊢ 1200E 1000¹ RPC 10-3 10^{-2} 10^{-1} λ", 323 10^{-2} 0.1 0.3 10^{2} 10 10⁻¹ 0.7 0.9 $\widetilde{\chi}^{0}_{1}$ lifetime [ns] $BR(\tilde{g} \rightarrow tbs)$ p $\lambda_{323}^{\prime\prime}$

RPC-RPV Combination: $\tilde{g} \rightarrow t \bar{\chi}_{2}^{0} (\rightarrow tbs) / \tilde{g} \rightarrow tbs, m(\tilde{\chi}_{2}^{0}) = 200 \text{ GeV}, bino-like \tilde{\chi}_{2}^{0}$

- Nice coverage and complementarity between RPC and RPV searches
- In some cases dedicated long-lived searches are needed to bridge the gaps
- Model with stop → t *˜*₁⁰ (→tbs via λ"₃₂₃) has sensitivity gaps in the τ_{*˜*₁}≈1-10 ns lifetime regime
- Drop in sensitivity when direct decay stop→bs dominates over the cascade decay stop → t x₁⁰ (→tbs)
- For large couplings, resonant production becomes relevant and the dijet search can place extremely tight constraints

Conclusions

- Extensive search program at the LHC in searches for supersymmetry with R-parity violation
- No significant excess observed
- Large increase in sensitivity still possible from full Run 2 dataset

Backup

CÉRN

RPV four leptons, ATLAS

 $\frac{1}{2}\lambda_{ijk}L_iL_jE_k^c$

- Breakdown of systematic uncertainties
- SR distributions

Javier Montejo Berlingen

18

RPV four leptons, ATLAS $\frac{1}{2} \lambda_{ijk} L_i L_j E_k^c$

• Exclusion limits per model

Resonant slepton, CMS

Cross section limits

 $\lambda'_{ijk} L_i Q_j D_k^c$

ÇÉRN

RPV all-hadronic, ATLAS $\frac{1}{2} \lambda''_{ijk} U^c_i D^c_j D^c_k$

RPV all-hadronic, ATLAS $\frac{1}{2} \lambda''_{ijk} U_i^c D_j^c D_k^c$

• Signal region distributions

Javier Montejo Berlingen

Phys. Lett. B 785 (2018) 136

• Event selection

Region	Gluino mass range	Jet $p_{\rm T}$	H_{T}	sixth jet $p_{\rm T}$	$D^2_{[(6,3)+(3,2)]}$	A_m	Δ	$D^2_{[3,2]}$
1	200–400 GeV	>30 GeV	>650 GeV	>40 GeV	<1.25	< 0.25	>250 GeV	< 0.05
2	400–700 GeV	$>30\mathrm{GeV}$	>650 GeV	>50 GeV	<1.00	< 0.175	>180 GeV	< 0.175
3	700–1200 GeV	> 50 GeV	>900 GeV	>125 GeV	< 0.9	< 0.15	>20 GeV	< 0.2
4	1200–2000 GeV	>50 GeV	>900 GeV	>175 GeV	< 0.75	< 0.15	>-120 GeV	< 0.25

Phys. Rev. D 99 (2019) 012010

• Gluino \rightarrow qq+LSP model

Javier Montejo Berlingen

25

• Model summary

Model name	Gqq	Gtt	Stop	R-hadron
Coupling	$\lambda_{112}^{\prime\prime}$	$\lambda_{323}^{\prime\prime}$	$\lambda_{323}^{\prime\prime}$	_
	$\tilde{g} \to qq\tilde{\chi}_1^0$	$\tilde{g} \to tt \tilde{\chi}_1^0$	$\tilde{t}_1 \to t \tilde{\chi}_1^0$	
Decay	$\tilde{g} \to qq\tilde{\chi}_1^0 (\to qqq)$	$\tilde{g} \to tt \tilde{\chi}_1^0 (\to tbs)$	$\tilde{t}_1 \to t \tilde{\chi}_1^0 (\to t b s)$	$\tilde{g} \to qq \tilde{\chi}_1^0$
	$\tilde{g} \rightarrow q q q$	$\tilde{g} \rightarrow tbs$	$\tilde{t}_1 \to bs$	
Other colored	$m(\tilde{q}) = 3 \text{ TeV}$	$m(\tilde{q}) = 5 \text{ TeV}$	$m(\tilde{q}, \tilde{g}) = 3$ TeV	$m(\tilde{a} \ \tilde{t} \ \tilde{b}) \sim PoV$
sparticle masses	$m(\tilde{t}, \tilde{b}) = 5$ TeV	$m(\tilde{t}, \tilde{b}) = 2.4 \text{ TeV}$	$m(\tilde{t}_2, \tilde{b}) = 3 \text{ TeV}$	$m(q, \iota, \upsilon) \sim 1 \mathrm{ev}$
LSP	The LSP	$m(\tilde{\chi}_1^0) = 100 \text{ GeV}$		

• Analyses summary

Analysis name	Leptons	Jets / b -tags	$E_{\rm T}^{\rm miss}$ requirement	Representative cuts	Model targeted	
RPC 0-lepton, 2-6 jets $[53]$	0	≥ 4 / -	$E_{\mathrm{T}}^{\mathrm{miss}}/m_{\mathrm{eff}} > 0.2$	$m_{\rm eff} > 3000~{ m GeV}$	Gqq, R -hadron	
BPC 0-lepton $7-11$ jets [55]	0	≥ 7 / –	$F^{\text{miss}}/\sqrt{H_{\pi}} > 5 \text{ GeV}^{1/2}$	_	Gqq	
10 0 0-1epton, 1-11 Jets [55]		$\geq 11\ / \geq 2$	$E_{\rm T}$ /V $E_{\rm T}$ / V $E_{\rm T}$ / V $E_{\rm T}$		Gtt	
BPC multi- h [56]	0	$\geq 7 \ / \geq 3$	$E_{\rm T}^{\rm miss} > 350~{ m GeV}$	$m_{\rm eff} > 2600 { m ~GeV}$	Gtt	
iti O multi-o [50]	1	$\geq 5 \ / \geq 3$	$E_{\rm T}^{\rm miss} > 500 {\rm ~GeV}$	$m_{\rm eff} > 2200~{ m GeV}$		
RPV 1-lepton $[57]$	1	$\geq 10\ / \geq 4$	—	—	Gtt , stop	
RPC Stop 0-lepton [58]	0	$\geq 4 / \geq 2$	$E_{\rm T}^{\rm miss} > 400 {\rm ~GeV}$	$m_{\text{jet,R}=1.2} > 120 \text{ GeV}$	stop	
RPC Stop 1-lepton [59]	1	$\geq 4 / \geq 1$	$E_{\rm T}^{\rm miss} > 250~{ m GeV}$	$m_T > 160 \text{ GeV}$	stop	
RPC and RPV same-sign	2 SS or 3	$\geq 6 / \geq 2$	$E_{\mathrm{T}}^{\mathrm{miss}}/m_{\mathrm{eff}}$;0.15	$m_{\rm eff} > 1800~{\rm GeV}$	Gtt, stop	
and three leptons $[60]$		$\geq 6 / \geq 2$	_	$m_{\rm eff} > 2000~{ m GeV}$		
RPV stop dijet pairs [61]	—	$\geq 4 / \geq 2$	_	$\mathcal{A} < 0.05$	stop	
Dijet and TLA $[62, 63]$	_	≥ 2 / -	_	$ y^* < 0.6$	stop	