Learning from Higgs Physics at Future Higgs Factories

Shufang Su • U. of Arizona

SUSY 2019 May 20, 2019 J. Gu, H. Li, Z. Liu, W. Su, 1709.06103 N. Chen, T. Han, SS, W. Su, Y. Wu, 1808.02037 H. Li, SS, W. Su, J. Yang, work in progress

S. Su

- Higgs precision measurements
- Global fit framework
- Perturbative models
 - SM with a real singlet extension (skip in this talk)
 - 2HDM (tree + loop, Higgs + Zpole)
 - MSSM (skip in this talk)
- Strong dynamics models (skip in this talk)
- Search @ 100 pp
- Conclusion

Higgs Precision Measurements

LHC: 14 TeV, 300 fb⁻¹, 3000 fb⁻¹

$\Delta \mu / \mu$	3	300 fb^{-1}	3	000 fb^{-1}
	All unc.	No theory unc.	All unc.	No theory unc.
$H \rightarrow \gamma \gamma \text{ (comb.)}$	0.13	0.09	0.09	0.04
(0j)	0.19	0.12	0.16	0.05
(1j)	0.27	0.14	0.23	0.05
(VBF-like)	0.47	0.43	0.22	0.15
(WH-like)	0.48	0.48	0.19	0.17
(ZH-like)	0.85	0.85	0.28	0.27
(<i>ttH</i> -like)	0.38	0.36	0.17	0.12
$H \rightarrow ZZ \text{ (comb.)}$	0.11	0.07	0.09	0.04
(VH-like)	0.35	0.34	0.13	0.12
(<i>ttH</i> -like)	0.49	0.48	0.20	0.16
(VBF-like)	0.36	0.33	0.21	0.16
(ggF-like)	0.12	0.07	0.11	0.04
$H \rightarrow WW$ (comb.)	0.13	0.08	0.11	0.05
(0j)	0.18	0.09	0.16	0.05
(1j)	0.30	0.18	0.26	0.10
(VBF-like)	0.21	0.20	0.15	0.09
$H \rightarrow Z\gamma$ (incl.)	0.46	0.44	0.30	0.27
$H \rightarrow b\bar{b} \text{ (comb.)}$	0.26	0.26	0.14	0.12
(WH-like)	0.57	0.56	0.37	0.36
(ZH-like)	0.29	0.29	0.14	0.13
$H \rightarrow \tau \tau \text{ (VBF-like)}$	0.21	0.18	0.19	0.15
$H \rightarrow \mu\mu \text{ (comb.)}$	0.39	0.38	0.16	0.12
(incl.)	0.47	0.45	04418	0.14
(<i>ttH</i> -like)	0.74	0.72	0.27	0.23

CEPC / FCC / ILC

collider	CEPC	FCC-ee			ILC				
\sqrt{s}	$240{ m GeV}$	$240{ m GeV}$	$250{ m GeV}$	350	GeV		$500{ m GeV}$		
$\int \mathcal{L} dt$	5 ab^{-1}	5 ab^{-1}	2 ab^{-1}	200	200 fb^{-1} 4 ab^{-1}				
production	Zh	Zh	Zh	Zh	$\nu \bar{\nu} h$	Zh	$\nu \bar{\nu} h$	$t\bar{t}h$	
$\Delta \sigma / \sigma$	0.51%	0.57%	0.71%	2.1%	-	1.06	-	-	
decay			$\Delta(\sigma$	$\cdot BR)/(\sigma$	$r \cdot BR)$				
$h \to b\bar{b}$	0.28%	0.28%	0.42%	1.67%	1.67%	0.64%	0.25%	9.9%	
$h \to c\bar{c}$	2.2%	1.7%	2.9%	12.7%	16.7%	4.5%	2.2%	-	
$h \rightarrow gg$	1.6%	1.98%	2.5%	9.4%	11.0%	3.9%	1.5%	-	
$h \to WW^*$	1.5%	1.27%	1.1%	8.7%	6.4%	3.3%	0.85%	-	
$h \to \tau^+ \tau^-$	1.2%	0.99%	2.3%	4.5%	24.4%	1.9%	$1.9\% \qquad 3.2\%$		
$h \rightarrow ZZ^*$	4.3%	4.4%	6.7%	28.3%	21.8%	8.8%	2.9%	-	
$h \rightarrow \gamma \gamma$	9.0%	4.2%	12.0%	43.7%	50.1% 12.0%		6.7%	-	
$h \to \mu^+ \mu^-$	17%	18.4%	25.5%	97.6%	179.8%	31.1% 25.5%		-	
$(\nu\bar{\nu})h \to b\bar{b}$	2.8%	3.1%	3.7%	-	_	_	-	-	

S. Su CEPC-preCDR, TLEP Design Study Working Group, ILC Operating Scenarios.

CEPC / FCC / ILC

collider	CEPC	FCC-ee			ILC				
\sqrt{s}	$240{ m GeV}$	$240{ m GeV}$	$250{ m GeV}$	350	GeV	ļ	$500{ m GeV}$		
$\int \mathcal{L} dt$	5 ab^{-1}	5 ab^{-1}	2 ab^{-1}	200	fb^{-1}		4 ab^{-1}		
production	Zh	Zh	Zh	Zh	$ u \overline{ u} h $	Zh	$\nu \bar{\nu} h$	$t\bar{t}h$	
$\Delta \sigma / \sigma$	0.51%	0.57%	0.71%	2.1%	-	1.06	-	-	
decay			$\Delta(\sigma$ -	$\cdot BR)/(\sigma$	$(\cdot \cdot BR)$				
$h \to b\bar{b}$	0.28%	0.28%	0.42%	1.67%	1.67%	0.64%	0.25%	9.9%	
$h \to c\bar{c}$	2.2%	1.7%	2.9%	12.7%	16.7%	4.5%	4.5% $2.2%$		
$h \rightarrow gg$	1.6%	1.98%	2.5%	9.4%	11.0%	3.9%	1.5%	-	
$h \to WW^*$	1.5%	1.27%	1.1%	8.7%	6.4%	3.3%	0.85%	-	
$h \to \tau^+ \tau^-$	1.2%	0.99%	2.3%	4.5%	24.4%	1.9%	3.2%	-	
$h \rightarrow ZZ^*$	4.3%	4.4%	6.7%	28.3%	21.8%	8.8% $2.9%$		-	
$h ightarrow \gamma \gamma$	9.0%	4.2%	12.0%	43.7%	50.1%	12.0%	6.7%	-	
$h \to \mu^+ \mu^-$	17%	18.4%	25.5%	97.6%	179.8%	31.1%	25.5%	-	
$(\nu\bar{\nu})h \to b\bar{b}$	2.8%	3.1%	3.7%	-	-	-	-	-	

S. Su CEPC-preCDR, TLEP Design Study Working Group, ILC Operating Scenarios.

Kappa framework and EFT Framework

1704.02333

6

Kappa Framework and EFT Framework

limitations of model-independent approaches

- large level of degeneracy parameter space for specific model much smaller
- correlation matrix often not provided
 over conservative estimation when not include correlation
- assumptions and simplifications may not be valid for a particular model

Perturbative Models

SM with a real singlet extension (skip) 2HDM (Type I, II, L, F)

MSSM (skip)

• Two Higgs Doublet Model (CP-conserving)

$$\Phi_{i} = \begin{pmatrix} \phi_{i}^{+} \\ (v_{i} + \phi_{i}^{0} + iG_{i})/\sqrt{2} \end{pmatrix}$$

$$v_{u}^{2} + v_{d}^{2} = v^{2} = (246 \text{GeV})^{2} \\ \tan \beta = v_{u}/v_{d}$$

$$\begin{pmatrix} H^{0} \\ h^{0} \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \phi_{1}^{0} \\ \phi_{2}^{0} \end{pmatrix}, \quad \begin{array}{c} A = -G_{1} \sin \beta + G_{2} \cos \beta \\ H^{\pm} = -\phi_{1}^{\pm} \sin \beta + \phi_{2}^{\pm} \cos \beta \end{pmatrix}$$

after EWSB, 5 physical Higgses CP-even Higgses: h⁰, H⁰ , CP-odd Higgs: A⁰, Charged Higgses: H[±]

• h⁰/H⁰ VV coupling
$$g_{H^0VV} = \frac{m_V^2}{v} \cos(\beta - \alpha), \quad g_{h^0VV} = \frac{m_V^2}{v} \sin(\beta - \alpha).$$

alignment limit: $\cos(\beta - \alpha) = 0$, h^o is the SM Higgs with SM couplings. S. Su 11

2HDM parameters

	Φ 1	ф2
Type I	u,d,l	
Type II	u	d,l
lepton-specific	u,d	L
flipped	u,l	d

Model	κ_V	κ_u	κ_d	κ_ℓ
2HDM-I	$\sin(\beta - \alpha)$	$\cos \alpha / \sin \beta$	$\cos lpha / \sin eta$	$\cos \alpha / \sin \beta$
2HDM-II	$\sin(\beta - \alpha)$	$\cos \alpha / \sin \beta$	$-\sin \alpha / \cos \beta$	$-\sin \alpha / \cos \beta$
2HDM-L	$\sin(\beta - \alpha)$	$\cos \alpha / \sin \beta$	$\cos lpha / \sin eta$	$-\sin \alpha / \cos \beta$
2HDM-F	$\sin(\beta - \alpha)$	$\cos \alpha / \sin \beta$	$-\sin \alpha / \cos \beta$	$\cos \alpha / \sin \beta$

• parameters (CP-conserving, flavor limit, Z₂ symmetry)

2HDM parameters

	ф 1	ф 2	
Type I	u,d,l		
Type II	u	d,l	
lepton-specific	u,d	I	
flipped	u,l	d	

Model	κ_V	κ_u	κ_d	κ_ℓ
2HDM-I	$\sin(\beta - \alpha)$	$\cos \alpha / \sin \beta$	$\cos \alpha / \sin \beta$	$\cos \alpha / \sin \beta$
2HDM-II	$\sin(\beta - \alpha)$	$\cos \alpha / \sin \beta$	$-\sin \alpha / \cos \beta$	$-\sin \alpha / \cos \beta$
2HDM-L	$\sin(\beta - \alpha)$	$\cos \alpha / \sin \beta$	$\cos \alpha / \sin \beta$	$-\sin \alpha / \cos \beta$
2HDM-F	$\sin(\beta - \alpha)$	$\cos \alpha / \sin \beta$	$-\sin \alpha / \cos \beta$	$\cos \alpha / \sin \beta$

• parameters (CP-conserving, flavor limit, Z₂ symmetry)

2HDM: Loop in the Alignment Limit

• theoretical constraints

S. Su

Tree-level 2HDM fit

2HDM, LHC/FCC fit

S. Su

TYPE II 2HDM: Tree + Loop

N. Chen, T. Han, SS, W. Su, Y. Wu, 1808.02037

2HDM: Loop in the Alignment Limit

2HDM: Tree + Loop

N. Chen, T. Han, SS, W. Su, Y. Wu, 1808.02037

Direct Search of Heavy Higgses @ 100 pp

Z-pole precision

	CEPC	ILC	TLEP-W/TLEP-Z
$\alpha_s(M_Z^2)$	$\pm 1.0 \times 10^{-4}$	$\pm 1.0 \times 10^{-4}$	$\pm 1.0 \times 10^{-4}$
$\Delta \alpha_{\rm had}^{(5)}(M_Z^2)$	$\pm 4.7 \times 10^{-5}$	$\pm 4.7 \times 10^{-5}$	$\pm 4.7 \times 10^{-5}$
$m_Z \; [\text{GeV}]$	± 0.0005	± 0.0021	$\pm 0.0001_{\rm exp}$
$m_t \; [\text{GeV}] \; (\text{pole})$	$\pm 0.6_{\rm exp} \pm 0.25_{\rm th}$	$\pm 0.03_{\rm exp} \pm 0.1_{\rm th}$	$\pm 0.6_{\rm exp} \pm 0.25_{\rm th}$
$m_h \; [\text{GeV}]$	$< \pm 0.1$	$<\pm 0.1$	$< \pm 0.1$
$m_W \; [\text{GeV}]$	$(\pm 3_{\rm exp} \pm 1_{\rm th}) \times 10^{-3}$	$(\pm 5_{\mathrm{exp}} \pm 1_{\mathrm{th}}) \times 10^{-3}$	$(\pm 8_{\rm exp} \pm 1_{\rm th}) \times 10^{-3}$
$\sin^2 heta_{ m eff}^\ell$	$(\pm 4.6_{\rm exp} \pm 1.5_{\rm th}) \times 10^{-5}$	$(\pm 1.3_{\rm exp} \pm 1.5_{\rm th}) \times 10^{-5}$	$(\pm 0.3_{\rm exp} \pm 1.5_{\rm th}) \times 10^{-5}$
$\Gamma_Z \ [\text{GeV}]$	$(\pm 5_{\mathrm{exp}} \pm 0.8_{\mathrm{th}}) \times 10^{-4}$	± 0.001	$(\pm 1_{\rm exp} \pm 0.8_{\rm th}) \times 10^{-4}$

	Cu	irrer	nt		CEPC			FCC-ee				ILC				
	_		correla	tion	σ		correla	tion	σ		correla	tion	σ		correla	tion
	0	S	T	U	(10^{-2})	S	T	U	(10^{-2})	S	T	U	(10^{-2})	S	Т	U
S	0.04 ± 0.11	1	0.92	-0.68	2.46	1	0.862	-0.373	0.67	1	0.812	0.001	3.53	1	0.988	-0.879
T	0.09 ± 0.14	-	1	-0.87	2.55	-	1	-0.735	0.53	-	1	-0.097	4.89	-	1	-0.909
U	-0.02 ± 0.11	-	-	1	2.08	-	-	1	2.40	-	-	1	3.76	-	-	1

2HDM: non-degenerate

Complementary to Zpole precision

Different Higgs Factories

Different Higgs Factories

Conclusion

- Higgs factory reach impressive precision
- Kappa-scheme/EFT scheme/model specific fit
- indirect constraints on new physics models
- complementary to Zpole precision program
- complementary to direct search @ 100 TeV pp

Conclusion

An exciting journey ahead of us!