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Particle content of the model

3 generations of 
SM singlet right handed  
neutrinos (anomaly free)

Yukawa interaction
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Table 1. The particle content of the model including the three generations of the right-handed
neutrinos (N i

R, i = 1, 2, 3) and a new scalar field (�).
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⇤ and C is the charge conjugate. Due to the gauge invariance the Yukawa

interactions impose
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Further more using Eq. 2.1 the solutions to these conditions are listed in Table 1. Finally

we obtain that the charges of the particles are controlled by the two parameters, xH

and x� only. Hence we conclude that the U(1)X gauge group can be defined as a linear

combination of the SM U(1)Y and the U(1)B�L. Putting xH = 0 and x� = 1 we can

be reduced to the B�L scenario. Therefore without the loss of generality we fix x� = 1

in our analysis through out the paper. The fourth and the fifth terms in Eq. 2.2 are the

Dirac and Majorana Yukawa terms. Without the loss of generality we use a diagonal basis

for the Majorana Yukawa coupling. After the breaking of theU(1)X and the electroweak

symmetries, the U(1)X gauge boson (Z 0) mass, Majorana masses of the RHNs and neutrino

Dirac masses are generated:
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Table 1: Particle contents. In addition to the SM particle contents, the right-handed neutrino
νi
R (i = 1, 2, 3 denotes the generation index) and a complex scalar Φ are introduced.

covariant derivatives relevant to U(1)Y× U(1)′ are defined as

Dµ ≡ ∂µ − i
(

Y1 YX

)

(

g1 g1X
gX1 gX

)(

Bµ

B′
µ

)

, (2.1)

where Y1 (YX) are U(1)Y (U(1)′) charge of a particle, and the gauge couplings gX1 and g1X are
introduced associated with a kinetic mixing between the two U(1) gauge bosons.

For generation-independent charge assignments, the U(1)′ charges of the fermions are defined
to satisfy the gauge and gravitational anomaly-free conditions:

U(1)′ × [SU(3)C ]
2 : 2xq − xu − xd = 0,
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Yukawa interactions:
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where H̃ ≡ iτ 2H∗, and the third and fifth terms on the right-hand side are for the seesaw
mechanism to generate neutrino masses. These Yukawa interaction terms impose

xH = −xq + xu = xq − xd = −xℓ + xν = xℓ − xe,

xΦ = −2xν . (2.4)

Solutions to these conditions are listed in Table 1 and are controlled by only two parameters,
xH and xΦ. The two parameters reflect the fact that the U(1)′ gauge group can be defined as
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three-generations of right-handed (or sterile) heavy neutrinosN , enabling the see-saw mech-

anism of light neutrino mass generation. In such models, N can be produced from a Higgs

boson, or pair produced at colliders via a Z
0. It can further decay with a displaced vertex

depending on its mass. Dedicated experimental searches for a Z 0 decaying to lepton pairs at

CMS place bounds on the Z 0 mass to be mZ0 > 4.5 TeV [9] (for a SM-like gauge coupling).

Recently the ATLAS collaboration analyzed the full Run 2 dataset [10], excluding a Z
0 just

below 5 TeV. For a broad review on models and early LHC strategies, see Ref. [11] and

references therein. To date, no public LHC searches exists yet that target displaced heavy

neutrinos as benchmark, making projections of current and proposed displaced strategies

in several models an attractive focus of research in recent years [12–33].

Current work on displaced neutrinos in U(1)B�L models have focused on displaced

signatures coming from Higgs bosons due to a higher production cross-section [22, 29].

For this reason, production via a Z
0 has had less attention. Early displaced strategies

for a simplified model were recasted in Ref. [27], with focus on a benchmark scenario

with relatively unboosted N . It was shown in Ref. [34] that an enhancement on the Z
0

production is possible, providing enhanced sensitivity to more complete scenarios in the

search for displaced heavy neutrinos when they come from a Z
0. Recently, LHC constrains

on the minimal B � L model were addressed in a global fit in [35] for several choices of

model parameters, but signatures involving displaced heavy neutrinos were not considered.

In this work, we propose to look for a pair of displaced heavy neutrinos in Z
0 decays from

two well-motivated models: the minimal U(1)B�L and the U(1)X version that provides

the cross-section enhancement described in [34]. We show that displaced vertex search

strategies CONCLUDE AFTER OUR FINAL FINDINGS, also if we are sensitive to higher

masses highlight that w.r.t Brian’s work .....

2 The Model

We consider a simple extension of the SM under the gauge group SU(3)c⇥SU(2)L⇥U(1)Y ⇥
U(1)X where U(1)X is realized as the linear combination of the SM U(1)Y and U(1)B�L

symmetry. The non-exotic U(1)X extension has been studied in [36]. The particle content

of the model is given in Teb. 1. In this model three generations of right-hand neutrinos

(RHNs) N i

R
are introduced to obtain an anomaly free scenario. A new scalar field � is also

introduced in the model. The charge assignment of the model does not depend upon the

generations of the fermions as a result the following gauge and gravitational anomalies will

be satisfied:

U(1)X ⇥ [SU(3)C ]
2 : 2xq � xu � xd = 0,

U(1)X ⇥ [SU(2)L]
2 : 3xq + x` = 0,

U(1)X ⇥ [U(1)Y ]
2 : xq � 8xu � 2xd + 3x` � 6xe = 0,

[U(1)X ]2 ⇥U(1)Y : x
2
q � 2x2u + x

2
d
� x

2
`
+ x
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e = 0,

[U(1)X ]3 : 6x3q � 3x3u � 3x3
d
+ 2x3

`
� x

3
⌫ � x

3
e = 0,

U(1)X ⇥ [grav.]2 : 6xq � 3xu � 3xd + 2x` � x⌫ � xe = 0. (2.1)
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Gauge and gravitational anomaly-free conditions

Yukawa interactions
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Table 1: Particle contents. In addition to the SM particle contents, the right-handed neutrino
νi
R (i = 1, 2, 3 denotes the generation index) and a complex scalar Φ are introduced.
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where Y1 (YX) are U(1)Y (U(1)′) charge of a particle, and the gauge couplings gX1 and g1X are
introduced associated with a kinetic mixing between the two U(1) gauge bosons.
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where H̃ ≡ iτ 2H∗, and the third and fifth terms on the right-hand side are for the seesaw
mechanism to generate neutrino masses. These Yukawa interaction terms impose
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Solutions to these conditions are listed in Table 1 and are controlled by only two parameters,
xH and xΦ. The two parameters reflect the fact that the U(1)′ gauge group can be defined as
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Table 1. The particle content of the model including the three generations of the right-handed
neutrinos (N i

R, i = 1, 2, 3) and a new scalar field (�).

The Yukawa sector of the model can be written in a gauge invariant way as
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where H̃ ⌘ i⌧
2
H

⇤ and C is the charge conjugate. Due to the gauge invariance the Yukawa

interactions impose

x
0
H = �xq + xu = xq � xd = �x` + x⌫ = x` � xe,

x
0
� = �2x⌫ . (2.3)

Further more using Eq. 2.1 the solutions to these conditions are listed in Table 1. Finally

we obtain that the charges of the particles are controlled by the two parameters, xH

and x� only. Hence we conclude that the U(1)X gauge group can be defined as a linear

combination of the SM U(1)Y and the U(1)B�L. Putting xH = 0 and x� = 1 we can

be reduced to the B�L scenario. Therefore without the loss of generality we fix x� = 1

in our analysis through out the paper. The fourth and the fifth terms in Eq. 2.2 are the

Dirac and Majorana Yukawa terms. Without the loss of generality we use a diagonal basis

for the Majorana Yukawa coupling. After the breaking of theU(1)X and the electroweak

symmetries, the U(1)X gauge boson (Z 0) mass, Majorana masses of the RHNs and neutrino

Dirac masses are generated:

MZ0 = g
0
r
4v2� +

1

4
x
2
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v2 ' 2g0v�,

MN↵ =
Y
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Np
2
v�,

M
↵�
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↵�

Dp
2
vSM, (2.4)
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Using the above equations, x′�H =
1
2

xH and x′�Φ = 2xΦ we find the charges of the U(1)X

sector is the linear combination of the U(1)Y and U(1)B−L charges .
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Table 1: Particle content of the minimal U(1)X model, where i, j = 1, 2, 3 are the generation
indices. Without loss of generality, we fix x� = 1.

group, SU(3)c⇥SU(2)L⇥U(1)Y⇥U(1)X , where U(1)X is realized as a linear combination of the
SM U(1)Y and U(1)B�L symmetry (the so-called non-exotic U(1) extension of the SM [21]).
The particle content of the model is listed in Table 1. The structure of the model is the same
as the minimal B � L model except for the U(1)X charge assignment. In addition to the SM
particle content, this model includes three generations of RHNs required for the cancellation
of the gauge and the mixed-gravitational anomalies, a new Higgs field (�) which breaks the
U(1)X gauge symmetry, and a U(1)X gauge boson (Z 0). The U(1)X charges are defined in
terms of two real parameters xH and x�, which are the U(1)X charges associated with H and
�, respectively. In this model x� always appears as a product with the U(1)X gauge coupling
and is not an independent free parameter, which we fix to be x� = 1 throughout this letter.
Hence, U(1)X charges of the particles are defined by a single free parameter xH . Note that this
model is identical to the minimal B � L model in the limit of xH = 0.

The Yukawa sector of the SM is then extended to include
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where the first and second terms are the Dirac and Majorana Yukawa couplings. Here we
use a diagonal basis for the Majorana Yukawa coupling without loss of generality. After the
U(1)X and the EW symmetry breakings, U(1)X gauge boson mass, the Majorana masses for
the RHNs, and neutrino Dirac masses are generated:
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where gX is the U(1)X gauge coupling, v� is the � VEV, vh = 246 GeV is the SM Higgs VEV,
and we have used the LEP constraint [23, 24] v�2

� vh2.
Let us now consider the RHN production via Z 0 decay. The Z 0 boson partial decay widths

into a pair of SM chiral fermions (fL) and a pair of the Majorana RHNs, respectively, are given
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Table 1: Particle content of the minimal U(1)X model, where i, j = 1, 2, 3 are the generation
indices. Without loss of generality, we fix x� = 1.
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Seesaw mechanism to generate the light neutrino mass

where g
0 is the U(1)X gauge coupling, v� is the VEV of � and vSM = 246 GeV is the

SM Higgs VEV. Using the LEP constraints from [37, 38] we use v� >> vSM. In this

model through the U(1)X symmetry breaking, the Majorana mass terms of the RHNs are

generated which induce the seesaw mechanism to generate the light neutrino mass. Hence

the neutrino mass matrix is obtained as

m⌫ =

 
0 MD

M
T

D
MN

!
(2.5)

Considering |M↵�

D
/M

↵

N
| << 1 and diagonalizing the neutrino mass matrix in Eq. 2.5 we

obtain the light neutrino mass eigenvalue as

m⌫ ' �MDM
�1
N

M
T

D (2.6)

Due to the nonzero U(1)X charges the Z 0 boson interacts with the particles in the same way

as it does in the B�L scenario [22, 25, 29, 34, 39–44], however, the CV and CA components

of the interactions between the Z
0 and the other particles in the model will depend upon

the xH and x� parameters. As we have already used x� = 1, the corresponding partial

decay widths of Z 0 into the fermions will depend upon xH .

The interaction between the Z
0 with the quarks can be written as

Lint = �g
0(qL�µQ

q

xL
qL + qR�µQ

q

xR
qR)Z

0
µ (2.7)

where qL (qR) is the left (right) handed quark and Q
q
xL (Qq

xR) is the U(1)X charge for the

left (right) handed quark. The corresponding interaction between the lepton sector and Z
0

can be written as

Lint = �g
0(`L�µQ

`

xL
`L + eR�µQ

`

xR
eR)Z

0
µ (2.8)

where `L (eR) is the left (right) handed lepton and the Q
`
xL
(Q`

xL
) is the U(1)X charge

for the left (right) handed lepton. All these charges are given in Tab. 2.1. After writing

the model under the U(1)X and B�L frameworks respectively in the UFO [45] format,

we study the pp ! Z
0 ! `

+
`
� for ` = e, µ process where the U(1)X coupling g

0 is

involved. Validating our analysis with the observed CMS [9] and ATLAS [10] bounds of

heavy resonance production under the SSM scenario [46], we recast the bounds on the g
0

for the U(1)X (xH = �1.2, x� = 1) and B�L (xH = 0, x� = 1) scenarios respectively.

The corresponding bounds are given in Fig. 1. We finally use these bounds for the further

analysis of the heavy neutrino production from Z
0 in our work. A diagram showing sterile

neutrino production and decay at the LHC considered can be seen in Figure 2. The

production cross-section of the heavy neutrino pair and the decay can be seen in Figure 3.

3 LHC sensitivity with displaced vertex searches (initial part of this

section has to be modified later)

For our study, we produce two UFO [45] models, based on the B�Lmodel in [8]. We adapt

it so that the light-heavy neutrino mixing and the sterile neutrino masses are treated as
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Alternatively we can have Neutrino mass in the following way 
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Note that the generation indices have been suppressed here. Under Z2, the third generation of

⌫R and S, i.e., ⌫R3 and S3 are odd whereas all the other particles are even and we assume that this

Z2 is not broken.

The U(1)0 charges of the fermions are defined to satisfy the gauge and gravitational anomaly-free

conditions:

U(1)0 ⇥ [SU(3)c]
2 : 2xq � xu � xd = 0,

U(1)0 ⇥ [SU(2)L]
2 : 3xq + xl = 0,

U(1)0 ⇥ [U(1)Y ]
2 : xq � 8xu � 2xd + 3xl � 6xe = 0,

[U(1)0]2 ⇥ U(1)Y : x2

q
� 2x2

u
+ x2

d
� x2

l
+ x2

e
= 0,

[U(1)0]3 : 6x3

q
� 3x3

u
� 3x3

d
+ 2x3

l
� x3

⌫
� x3

e
= 0,

U(1)0 ⇥ [grav]2 : 6xq � 3xu � 3xd + 2xl � x⌫ � xe = 0. (2.5)

The most general Yukawa Lagrangian (along with the Majorana mass for S) invariant under

SU(3)c ⇥ SU(2)L ⇥ U(1)Y ⇥ U(1)0 that could be written using the fields given above is,

�LYukawa = YelLHeR+Y⌫lLH̃⌫R+YuQL
H̃uR+YdQL

HdR + yNS⌫R�S+
1

2
ScMµS + h.c., (2.6)

where H̃ = i�2H⇤. The invariance of this Yukawa Lagrangian under the U(1)0 symmetry gives us

the following conditions :

xH

2
= �xq + xu = xq � xd = �xl + x⌫ = xl � xe ; �x� = x⌫ . (2.7)

Using these conditions and the anomaly-free conditions, the U(1)0 charges of all the fermions could

be determined in terms of xH and x� as,

x⌫ = �x� ; xl = �x� �
xH

2
; xe = �x� � xH ,

xq =
1

6
(2x� + xH) ; xu =

1

3
(2xH + x�) ; xd =

1

3
(x� � xH), (2.8)

Note that the choice x� = 1 and xH = 0 correspond to the well known U(1)B�L model. From

Eq.(2.6), after symmetry breaking, the terms relevant for neutrino mass are,

� Lmass = ⌫LMD⌫R + ⌫R MRS +
1

2
ScMµS + h.c., (2.9)
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EWSB U(1)X breaking U(1)X charge neutral

where, MD = Y⌫hHi and MR = yNSh�i . The neutral fermion mass matrix M⌫ can be defined as,

� Lmass =
1

2
( ⌫c

L
⌫R Sc )

0

BBB@

0 M⇤
D

0

M †
D

0 MR

0 MT

R
Mµ

1

CCCA

0

BBB@

⌫L

⌫c

R

S

1

CCCA
+ h.c.. (2.10)

The mass scales of the three sub-matrices ofM⌫ may naturally have a hierarchy MR >> MD >>

Mµ . Then, the e↵ective light neutrino mass matrix in the seesaw approximation is given by,

Mlight = M⇤
D
(MT

R
)�1MµM

�1

R
M †

D
. (2.11)

Because of the extra Z2 symmetry, the Yukawa coupling matrices Y⌫ and yNS and hence the

mass matrices MD and MR will have the following textures,

MR = yNSh�i ⇠

0

BBB@

⇥ ⇥ 0

⇥ ⇥ 0

0 0 ⇥

1

CCCA
and MD = Y⌫hHi ⇠

0

BBB@

⇥ ⇥ 0

⇥ ⇥ 0

⇥ ⇥ 0

1

CCCA
. (2.12)

In addition, we will choose Mµ to be diagonal without loss of generality. Since ⌫R3 and S3 do not

mix with other neutral fermions, they will not contribute to the seesaw mechanism and we will

have a minimal inverse seesaw mechanism (3 ⌫L + 2 ⌫R + 2 S case) in which the lightest active

neutrino will be massless. The two fermions ⌫R3 and S3 mix among themselves and the lightest

mass eigenstate could be a stable DM candidate. In the heavy sector, we will have two pairs of

degenerate pseudo-Dirac neutrinos of masses of the order ⇠ MR ± Mµ that mix with the active

light neutrinos. Thus, we have an inverse seesaw mechanism in which the smallness of Mlight is

naturally attributed to the smallness of both Mµ and MD
MR

. For instance, Mlight ⇠ O (0.1) eV can

easily be achieved by taking MD
MR

⇠ 10�2 and Mµ ⇠ O (1) keV. Thus, the seesaw scale can be

lowered down considerably for typical values of the parameters – Y⌫ ⇠ O(0.1), MD ⇠ 10 GeV

and MR ⇠ 1 TeV.

III. SCALAR POTENTIAL OF THE MODEL AND SYMMETRY BREAKING

The scalar potential of the model is given by,

V (�, H) = m2

1
H†H + �1(H

†H)2 + �3H
†H �†� + m2

2
�†� + �2(�

†�)2 . (3.1)

6

where, MD = Y⌫hHi and MR = yNSh�i . The neutral fermion mass matrix M⌫ can be defined as,

� Lmass =
1

2
( ⌫c

L
⌫R Sc )

0

BBB@

0 M⇤
D

0

M †
D

0 MR

0 MT

R
Mµ

1

CCCA

0

BBB@

⌫L

⌫c

R

S

1

CCCA
+ h.c.. (2.10)

The mass scales of the three sub-matrices ofM⌫ may naturally have a hierarchy MR >> MD >>

Mµ . Then, the e↵ective light neutrino mass matrix in the seesaw approximation is given by,

Mlight = M⇤
D
(MT

R
)�1MµM

�1

R
M †

D
. (2.11)

Because of the extra Z2 symmetry, the Yukawa coupling matrices Y⌫ and yNS and hence the

mass matrices MD and MR will have the following textures,

MR = yNSh�i ⇠

0

BBB@

⇥ ⇥ 0

⇥ ⇥ 0

0 0 ⇥

1

CCCA
and MD = Y⌫hHi ⇠

0

BBB@

⇥ ⇥ 0

⇥ ⇥ 0

⇥ ⇥ 0

1

CCCA
. (2.12)

In addition, we will choose Mµ to be diagonal without loss of generality. Since ⌫R3 and S3 do not

mix with other neutral fermions, they will not contribute to the seesaw mechanism and we will

have a minimal inverse seesaw mechanism (3 ⌫L + 2 ⌫R + 2 S case) in which the lightest active

neutrino will be massless. The two fermions ⌫R3 and S3 mix among themselves and the lightest

mass eigenstate could be a stable DM candidate. In the heavy sector, we will have two pairs of

degenerate pseudo-Dirac neutrinos of masses of the order ⇠ MR ± Mµ that mix with the active

light neutrinos. Thus, we have an inverse seesaw mechanism in which the smallness of Mlight is

naturally attributed to the smallness of both Mµ and MD
MR

. For instance, Mlight ⇠ O (0.1) eV can

easily be achieved by taking MD
MR

⇠ 10�2 and Mµ ⇠ O (1) keV. Thus, the seesaw scale can be

lowered down considerably for typical values of the parameters – Y⌫ ⇠ O(0.1), MD ⇠ 10 GeV

and MR ⇠ 1 TeV.

III. SCALAR POTENTIAL OF THE MODEL AND SYMMETRY BREAKING

The scalar potential of the model is given by,

V (�, H) = m2

1
H†H + �1(H

†H)2 + �3H
†H �†� + m2

2
�†� + �2(�

†�)2 . (3.1)

6

where, MD = Y⌫hHi and MR = yNSh�i . The neutral fermion mass matrix M⌫ can be defined as,

� Lmass =
1

2
( ⌫c

L
⌫R Sc )

0

BBB@

0 M⇤
D

0

M †
D

0 MR

0 MT

R
Mµ

1

CCCA

0

BBB@

⌫L

⌫c

R

S

1

CCCA
+ h.c.. (2.10)

The mass scales of the three sub-matrices ofM⌫ may naturally have a hierarchy MR >> MD >>

Mµ . Then, the e↵ective light neutrino mass matrix in the seesaw approximation is given by,

Mlight = M⇤
D
(MT

R
)�1MµM

�1

R
M †

D
. (2.11)

Because of the extra Z2 symmetry, the Yukawa coupling matrices Y⌫ and yNS and hence the

mass matrices MD and MR will have the following textures,

MR = yNSh�i ⇠

0

BBB@

⇥ ⇥ 0

⇥ ⇥ 0

0 0 ⇥

1

CCCA
and MD = Y⌫hHi ⇠

0

BBB@

⇥ ⇥ 0

⇥ ⇥ 0

⇥ ⇥ 0

1

CCCA
. (2.12)

In addition, we will choose Mµ to be diagonal without loss of generality. Since ⌫R3 and S3 do not

mix with other neutral fermions, they will not contribute to the seesaw mechanism and we will

have a minimal inverse seesaw mechanism (3 ⌫L + 2 ⌫R + 2 S case) in which the lightest active

neutrino will be massless. The two fermions ⌫R3 and S3 mix among themselves and the lightest

mass eigenstate could be a stable DM candidate. In the heavy sector, we will have two pairs of

degenerate pseudo-Dirac neutrinos of masses of the order ⇠ MR ± Mµ that mix with the active

light neutrinos. Thus, we have an inverse seesaw mechanism in which the smallness of Mlight is

naturally attributed to the smallness of both Mµ and MD
MR

. For instance, Mlight ⇠ O (0.1) eV can

easily be achieved by taking MD
MR

⇠ 10�2 and Mµ ⇠ O (1) keV. Thus, the seesaw scale can be

lowered down considerably for typical values of the parameters – Y⌫ ⇠ O(0.1), MD ⇠ 10 GeV

and MR ⇠ 1 TeV.

III. SCALAR POTENTIAL OF THE MODEL AND SYMMETRY BREAKING

The scalar potential of the model is given by,

V (�, H) = m2

1
H†H + �1(H

†H)2 + �3H
†H �†� + m2

2
�†� + �2(�

†�)2 . (3.1)

6

Inverse seesaw mechanism to generate the light neutrino mass
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Another important aspect of these model is  the existence of a  
heavy neutral gauge boson     which interacts with the particles of the 
model

Z′�

SU(3)c⇥SU(2)L⇥U(1)Y⇥U(1)X . The particle content of this model is listed in Table I.

In addition to the SM particle content, three right-handed neutrinos are introduced to can-

cel the gauge and the mixed-gravitational anomalies. A new Higgs field (�), which is singlet

under the SM gauge group, is also introduced to break the U(1)X gauge symmetry by its

vacuum expectation value (VEV). This model is a generalization of the minimal B�L model

[? ? ? ? ? ] and the particle content is the same as the one of the B � L model except

for the U(1)X charge assignment [? ]: U(1)X charge of a particle is a linear combination

of its U(1)Y and U(1)B�L charges with real parameters xH and x�. Since the U(1)X gauge

coupling is a free parameter of the model, we fix x� = 1 throughout this letter, without loss

of generality. Note that in the limit of xH ! 0 the minimal U(1)X model is identical to the

minimal B � L model.
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where C denotes taking charge-conjugation, and the first and second terms in the right hand

side are the Dirac and Majorana Yukawa couplings, respectively. Here, we have worked in

the basis where YN is diagonalized without loss of generality. We assume a suitable Higgs

potential for H and � to develop their VEVs (hHi = (v 0)T/
p
2 with v = 246 GeV and

h�i = v�/
p
2) at the potential minimum and to break the electroweak and the U(1)X gauge

symmetries. After the gauge symmetry breaking, the mass of the U(1)X gauge boson (Z 0

boson), the Majorana masses for the right-handed neutrinos and the neutrino Dirac masses

are generated:
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where gX is the U(1)X gauge coupling, and we have used the LEP constraint [? ? ] v2� � v
2.

With the generation of the Dirac and Majorana masses, type-I seesaw mechanism work to

account for tiny Majorana masse for the light neutrino mass eigenstates. The detail of the

seesaw mechanism and the heavy neutrino decay processes will be discussed later.
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CMS (36/fb) 
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background arising from W+jets and multijet events in which one or more jets satisfy the
electron selection criteria is not included in the study.

The SSM signal Z0 ! ee was generated at leading-order (LO) in QCD using PYTHIA 8.186 [59]
with the NNPDF23LO PDF set [70] and the ATLAS A14 set of tuned parameters [71] for
event generation, parton showering and hadronization. The Z0

SSM boson is assumed not
to couple to the SM W and Z bosons and interference between the Z0 boson and the SM Z
boson production amplitudes is neglected. Higher-order QCD corrections were computed
with the same methodology and applied as for the DY background.

The event selection is similar to the one developed for Run 2 [66]. The events have to be
accepted by the single electron trigger which requires at least one electron with transverse
momentum pT > 22 GeV in |h| < 2.5. Events are required to contain exactly two electrons
fulfilling the medium identification working point and have pT > 25 GeV in |h| < 2.47
excluding 1.37 < |h| < 1.52. The electrons are reconstructed and identified as detailed in
Section 4.2.
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Figure 4.20: (a) Invariant mass distribution for events satisfying all selection criteria in the dielectron
channel. The expected background is shown together with a SSM Z0 boson with a mass of 5 TeV.
(b) Observed (solid black line) and expected (dashed black line) upper limits on cross section times
branching ratio (s ⇥ BR) as a function of the SSM Z0 boson mass in the dielectron channel. The
1s (green) and 2s (yellow) expected limit bands are also shown. The predicted s ⇥ BR for SSM Z0

production is shown as a black line. The vertical dashed line indicates the observed mass limit of the
ATLAS Run 2 results using 36.1 fb�1 of

p
s = 13 TeV data [66].

The resulting dielectron invariant mass spectrum (mee) is shown in Figure 4.20(a) for the DY
background as well as for an example Z0 boson with a mass of 5 TeV.

The statistical analysis is performed for the search for a Z0

SSM boson using the mee distribution.
The same methodology is used as in the Run 2 analysis which uses a Bayesian analysis [72].
Upper limits on the cross section for producing a Z0

SSM boson times its branching ratio
(s ⇥ BR) are computed at the 95% CL as a function of the Z0

SSM boson mass. The 95% CL

Chapter 4: Expected Performance of the LAr Calorimeters 63

ATLAS-TDR-027 (prospective)

ATLAS: 1903.06248 (139/fb)



Current LHC constraints on                    (sample)gx vs MZ′�

1 2 3 4 5 6
0.001

0.005
0.010

0.050
0.100

0.500
1

MZ'[TeV]

g'

xH = − 1.2, xΦ = 1

xH = 0, xΦ = 1
(B − L case)



xH=0
xH=-1.3333
xH=1.0

2.0 2.5 3.0 3.5 4.0 4.5 5.0

0.1

1

10

100

1000

MZ'[TeV]

σ
(p
p
→
Z
')
B
(Z
'→
ll)

g X
2

[fb
]

s =13 TeV

Dilepton production from the   Z′� at the LHC

xH = 0
xH = − 4

3

xH = 1.0



xy = 2e
xy = Zh

2.0 2.5 3.0 3.5 4.0 4.5 5.0
0.01

0.10

1

10

100

1000

MZ'[TeV]

σ
(p
p
→
Z
')
B
(Z
'→
xy
)

g X
2

[fb
]

xH=-1.3333, s =13 TeV

Dilepton and the        production from the   Z′� at the 13 TeV LHCZh

pp → Z′� → 2e

pp → Z′� → Zh

xH = −
4
3



xy = 2e
xy = Zh

-2.0 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6
0.1

0.5

1

5

10

xH

σ
(p
p
→
Z
')
B
(Z
'→
xy

)
g X
2

[fb
]

MZ'=4.0 TeV, s =13 TeV

Dilepton and       production at the 13 TeV LHCZh

MZ′� = 4TeV

Zh

2e



Production process at the linear collider
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FIG. 5: The deviation of the Zh production cross section in the U(1)X model section from the SM

for at the ILC for di↵erent center of mass energies but fixed xH(left panel) and di↵erent xH but

center of mass energy is fixed at 1 TeV. In all these cases we considered MZ
0 has been fixed at 7.5

TeV.

panel) for a variety of the ILC center of mass energy from 250 GeV to 3 TeV. The deviation

for xH = �1.2 (solid) is greater than the deviation for xH = �0.8 (dashed). The deviation

reaches about 8% for xH = �1.2 at the
p
s = 1 TeV ILC. A complementary plot for the

deviation at the
p
s = 1 TeV ILC using MZ0 = 7.5 TeV has been shown in Fig. 4 (right

panel) varying the value of xH . It can be seen that the deviation reaches at the maximum

value of 8% at xH = �1.2.
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Conclusions
In this work we are studying the heavy resonance production at 
the colliders such as LHC and ILC. To study the heavy resonance 
we have used a general U(1) extension of the Standard Model 
where the Higgs production is enhanced by the additional U(1) 
charges obtained after the anomaly cancellations. 

This model is extremely useful for the further study of the 
various properties of the beyond the standard model physics 
such as the pair production of the heavy neutrinos, dark 
matter physics (both of the scalar and fermion) and vacuum 
stability. Such studies have been performed in a variety of 
past literatures and also will be done in some future articles.

Thank you


