A Global Liquid Argon Dark Matter Search Program

Andrew Renshaw, University of Houston
On behalf of the Global Argon Dark Matter Collaboration (GADMC)
SUSY 2019, Corpus Christi, TX
May 23rd, 2019
Why Liquid Argon (LAr)

• Efficient Scintillator
 • 40 photons/keV\textsubscript{ee} @ 128 nm
 • Transparent to own scintillation light

• High ionization yield
 • W \sim 10-20 eV with a high electron mobility
 • Further background discrimination with S2/S1 (factor of \sim 10^2)

• Powerful PSD in the scintillation signal
 • Separate ER background from the WIMP induced NR signal
 • Rejection factor of >10^9

• Simple cryogenic and gas handling with inline filter
 • Easily purified to achieve long electron drift lengths
Background Mitigation Strategy

- Deep underground sites to shield cosmic rays

- Screening and selection of detector materials

- Two-phase Ar TPC: 3D-TPC fiducialization; S1 PSD, S2/S1 cut

- Active liquid scintillator neutron veto

- Underground argon (UAr) with reduced 39Ar
S1 Signal

e,γ

χ,n
S1 Signal

Field shaping rings keep uniform 200 V/cm drift field

Ionization: e^+

Scintillation: S1

S1: 6ns & 1.6μs
S2 Signal

Extraction Field = ~ 3 kV/cm

Ionization: e^-

Scintillation: $S1$

Electro-luminescence: $S2$
Pulse Shape Discrimination with S1

Singlet and triplet fraction difference gives >10^9 rejection between NR and ER

\[f(t) = \left[\frac{q}{\tau_F} e^{-t/\tau_F} + \frac{1-q}{\tau_S} e^{-t/\tau_S} \right] \]

\[\tau_F = 6\,\text{ns} \]
\[\tau_S = 1.6\,\mu\text{s} \]
\[q = F90 = \begin{cases}
0.3ER \\
0.7NR
\end{cases} \]
2-Phase TPC

The drift time gives the z-position with mm precision.

Top Array PMT light fractions for S2 give x,y location.
Underground Argon (UAr)

- $^{40}\text{Ar}(n,2n)^{39}\text{Ar}$ occurs in the atmosphere
- Argon that has remained underground can therefore have extremely low levels of ^{39}Ar

- DS-50 UAr fill measured the ^{39}Ar reduction factor: $>10^3$!!
16,660 kg day UAr exposure
UAr Ionization Signal Analysis

Single electron detection very efficient
Summary of Darkside-50

- AAr 2013-2015, UAr since 04/2015
 - Cryogenics system very stable
 - TPC HV system stable for years

- LY @ null field ~8 pe/keV_{ee}

- 1,422 kg-days AAr + 19,276 kg-days UAr
 - No remaining background in WIMP search region!!!

- Ionization signal analysis give leading result for low-mass WIMPS
The GADMC Program

- DarkSide-50 (running)
- DEAP-3600 (running)
- miniCLEAN
- ArDM

- DS-20k (50 tonnes) ~2022

- Argo (300-400 tonnes) ~2027
Darkside-20k: A United Front

- Brings together all existing LAr dark collaborations
 - DarkSide-50
 - DEAP-3600
 - ArDM
 - miniCLEAN

- 50 tonnes sealed PMMA
- UAr target
- Silicon photomultipliers
- AAr-based Veto in ProtoDUNE style membrane cryostat
AAr Cryostat

Identical size and shape as ProtoDUNE

Side TCO replaced by “top-cap” deployment
Sealed PMMA Acrylic Vessel

- Containment of UAr from AAr, no nearby cryostat
- Clevios+TPB coated diving-bell anode window
- SiPM planes moved outside of active volume
- Reflector from low-mass ESR foils and PMMA
- Field-rings machine-grooved and Clevios coated
- HV delivery via feedthrough and cold-cable
- Clevios+TPB coated cathode window
- Builds on experience gained from DEAP-3600
UAr: Urania

The Urania project will procure 50 tonnes of UAr from the same Colorado source as for DS-50.

Will extract 250 kg/day, with 99.9% purity → 90 tonnes/yr.

UAr will be transported to Sardinia for final chemical purification at Aria.
UAr: Aria

Final chemical purification of the UAr

Processing of O(1 tonne/day) with 10^3 reduction of all chemical impurities

Ultimate goal is to isotopically separate ^{39}Ar from ^{40}Ar
Cryogenics

- Membrane cryostat + AAr cryogenics

- UAr cryogenics, circulation speed up to 1000 stdL/min in gas phase (by DarkSide-built circulation pump)
Large Area SiPMs

- Compact \rightarrow increase coverage
- $>50\%$ PDE @ 420 nm
- 0.1 Hz/mm^2 DCR
- SiPM tiles \rightarrow PDMs
- $>22 \text{ m}^2$ of SiPMs total

Photo-Detector Module (PDM)
LAr+Gd-Doped PMMA Veto

TPC optically isolated from AAr volumes

Passive shell of Gd-doped PMMA (n moderation/capture)

Inner/outer layers of active AAr for n capture gamma detection

Optically/electrically isolated from outside AAr by copper vessel

Segmented approach to reduce overall rate from ^{39}Ar in AAr
The integration between the protoDUNE like membrane cryostat and the DarkSide-20k TPC is being designed by both protoDUNE engineers and GADMC engineers.

Overall integration at LNGS Hall C, TPC will be tested in a test vessel before installing into the membrane cryostat.

DarkSide-20k is now a CERN recognized experiment (RE37).
DS-Protos at CERN

Integrated acrylic TPC for S2 study
With SiPMs as photosensors
Under construction @CERN

Key techniques:
SiPM integrated test
Conductive polymer (Clevios)
ESR as reflectors
Acrylic bonding

Proto_1ton: scaled down version of DS-20k, sealed acrylic TPC
Will be assembled @CERN in Q2 2020
DS-LowMass

- Potential to reuse DS-Proto (~1 tonne) TPC @ LNGS
- 350 kg active volume
- Active Neutron Veto
- Low mass sensitivity has been demonstrated by DS-50 (S2 only analysis)
Ultimate WIMP Sensitivity

Dark Matter-Nucleon σ_{SI} [cm2]

M_χ [TeV/c2]

CRESST-III 2017
CDMSlite 2017
ATLAS 2018 (Vector Z', 95% CL)
DarkSide-50 2018
DEAP-3600 2017
LUX 2017
DEAP-3600 proj.
DARWIN 200
Argo 3000t x yr proj.
Neutrino floor on xenon
DarkSide-LM proj.
SuperCDMS Ge HV proj.
XENONnT proj.
XENON1T 2018, PANDAX-II, 2017
PANDAX-II 2017
LZ proj.
LUX 2017
Neutrino Detection in DS-20k

- DS-20k will be sensitive to coherent elastic neutrino nucleus scattering (CEvNS)

- Neutral current interaction \rightarrow Flavor blind measurement that is not affected by oscillations
Supernova Neutrinos in DS-20k

11 M_{Sun} at 10 kpc

Full-burst detection σ (200-300 events)

Total flux/Ave. E measured within 10%

Neutronization burst detection σ (10 events)
Thank You!
Backups
Projected Sensitivities
Projected Sensitivities
Neutrino Cross Section in LAr

K. Scholberg 2012
SN Flux Time-evolution

Neutronization Burst \(\sim 50 \) ms

Accretion Phase \(\sim 750 \) ms

Cooling Phase \(\sim 10 \) s
SN Neutrinos in Argo

Argo Measurements of Neutrino Average Energy & Total Energy Emited

<table>
<thead>
<tr>
<th>total_medium_h2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entries</td>
</tr>
<tr>
<td>Mean x</td>
</tr>
<tr>
<td>Mean y</td>
</tr>
<tr>
<td>Std Dev x</td>
</tr>
<tr>
<td>Std Dev y</td>
</tr>
</tbody>
</table>

measured-Neutrino-Average-Energy / true-Neutrino-Average-Energy

measured-Total-Energy / true-Total-Energy
The Darkside-50 Detector

- Rn-free clean room
 (10-15 mBq/m³ in 110 m³)

- Water Cherenkov muon veto:
 1 kton H₂O

- Boron-loaded liquid scintillator
 ~30 ton (50% TMB + 50% PC)

- Two-Phase LAr TPC
 50 kg active volume
Darkside-50 TPC

- **PTFE Cylinder**
 - h=36 cm, d=36 cm, 46 kg (44 kg fiducial), inner surface is coated with TPB

- **38 3” Hamamatsu PMTs:**
 - R11065: 19(top) + 19(bottom)
 - Cold amplifier (low PMT HV)

- **Cathode and anode windows:**
 - Fused silica w/ ITO transparent layers (15 nm) & TPB

- **Field shaping copper rings:**
 - Uniform electric field: \(E_{\text{drift}} = 220 \text{ V/cm} \) \(E_{\text{gas}} = 2.8 \text{kV/cm} \)

- **Fused silica diving bell**
 - Gas pocket holding for S2 signal
Veto Detectors

• Water Cherenkov Veto
 • Muon flux reduced by 10^6 (>99% efficient)
 • 80 PMTs, 11 m diameter x 10 m high
 • Detect the Cerenkov light produced by the muons and other showering particles
 • Provides passive gamma and neutron shielding

• Liquid Scintillator Veto
 • 4 m boron-loaded liquid scintillator (PC:TMB)
 • 110 8” PMTs
 • Efficiently detect escaping neutrons and veto any associated nuclear recoil backgrounds
 • >99% efficiency for neutrons
 • Provide in situ measurement of the neutron background rate
Calibration System

\[
\begin{align*}
S_1 \text{ [PE]} & \quad 50 \quad 100 \quad 150 \quad 200 \quad 250 \quad 300 \quad 350 \quad 400 \quad 450 \\
90 \quad f & \quad 0.1 \quad 0.2 \quad 0.3 \quad 0.4 \quad 0.5 \quad 0.6 \quad 0.7 \quad 0.8 \quad 0.9 \quad 1
\end{align*}
\]

\(\text{AmBe in DarkSide-50} \)

\(\text{Energy [keV]} \)
Backgrounds

- Internal radioactivity
- Gamma Rays
- Cosmic muons
- Radiogenic neutrons
- Fast neutrons

\[\alpha, \beta, \mu, n, p, \gamma \]