Model-Independent Constraints on Dark Matter Annihilation in Dwarf Spheroidal Galaxies

Pearl Sandick

with Kim Boddy (JHU); Stephen Hill, Jason Kumar, and Danny Marfatia (UH) Phys.Rev. D97 (2018) no.9, 095031, arXiv:1802.03826 and ongoing work

DM Indirect Detection

- Neutrinos
- Electrons/Positrons
- Protons/Antiprotons
- Nuclei/Antinuclei

- Photons:
 - Direct annihilation
 - Radiation (Internal Brem.)
 - Decays/Hadronization/Cascades
 - Synchrotron, Inverse Compton Scattering of e⁺/e⁻...

This analysis:

- We constrain the number of DM annihilation photons, completely independent of DM particle physics model or DM astrophysics.
 - estimate the number of background (+foreground) photons empirically
 - constrain the number of DM annihilation photons statistically
- Similar to Geringer-Sameth and Koushiappas (2011):
 - background distribution determined empirically *no modeling*
 - use only number of photon counts no spectral information
- simple stacked analysis *all photon events weighted equally*
 - separates observational data, J factor, and details of DM physics
- Fermi LAT Pass 8 data set and 3FGL point source catalog

Details of Analysis

- Choose an ROI (*i*), centered on a target dwarf, with radius 10 degrees.
- Define the signal region as area within 0.5 degrees of the target's location.
- Randomly choose 10⁵ sample regions within the ROI of the same size as the signal region.
 - Reject any sample region whose boundary intersects the border of the ROI or the boundary of a known source region (within 0.8 degrees of a known point source).
- Histogram the number of counts for the surviving sample regions.

$$\rightarrow$$
 Probability Mass Function: $P_{\text{bgd}}^{i}(N_{\text{bgd}}^{i})$

Details of Analysis

arXiv:1802.03826

P. Sandick

Targets

- Pre-defined sets:
 - 1. 45 objects from 1611.03184
 - (a) 28 confirmed dwarfs
 - (b) 28 dwarfs + 13 likely galaxies
 - (c) 27 dwarfs w/out contamination
 - 2. 27 dwarfs from 1604.05599
 - 3. 24 dwarfs w/ J-factors assuming non-spherical halos from 1603.08046
 - 4. **7 dwarfs** w/ J-factors assuming modified foreground effects from 1608.01749 and 1706.05481
 - 5 dwarfs w/ Sommerfeld-enhanced J-factors (Coulomb limit) from 1702.00408
- Choose your own adventure!

Name	$\bar{A}_{\rm eff}T_{\rm obs}$	\overline{N}_{bgd}	Nobs	$\log_{10}(J/[\text{GeV}^2/\text{cm}^5])$							
	$[\rm cm^2 s]$	584		Set 1	a	b	\mathbf{c}	Set 2	Set 3	Set 4	Set 5
Bootes I	4.042e+11	137	128	$18.2^{+0.4}_{-0.4}$	\checkmark	\checkmark	\checkmark	$16.65_{-0.38}^{+0.64}$	$16.95^{+0.53}_{-0.40}$	-	-
Bootes II	4.012e+11	138	144	$18.9^{+0.6}_{-0.6}$	\checkmark	\checkmark	-	-	-	-	-
Bootes III	4.197e+11	117	99	$18.8^{+0.6}_{-0.6}$	\checkmark	\checkmark	\checkmark	-	-	-	-
Canes Venatici I	4.270e+11	102	72	$17.4^{+0.3}_{-0.3}$	\checkmark	\checkmark	\checkmark	$17.27^{+0.11}_{-0.11}$	$16.92^{+0.43}_{-0.26}$	-	-
Canes Venatici II	4.259e+11	103	91	$17.6^{+0.4}_{-0.4}$	\checkmark	\checkmark	-	$17.65_{-0.40}^{+0.40}$	$17.23_{-0.68}^{+0.84}$	-	-
Carina	4.363e+11	203	159	$17.9^{+0.1}_{-0.1}$	\checkmark	\checkmark	-	$17.99^{+0.34}_{-0.34}$	$17.98^{+0.46}_{-0.28}$	-	-
Cetus II	3.737e+11	87	95	$19.1^{+0.6}_{-0.6}$	-	-	\checkmark	-	-	-	-
Columba I	4.024e+11	123	120	$17.6^{+0.6}_{-0.6}$	-	\checkmark	-	-	-	-	-
Coma Berenices	4.046e+11	115	151	$19.0^{+0.4}_{-0.4}$	\checkmark	\checkmark	-	$18.67^{+0.33}_{-0.32}$	$18.52_{-0.74}^{+0.94}$	$18.70_{-0.69}^{+0.72}$	$21.59^{+0.26}_{-0.29}$
Draco	5.366e+11	175	150	$18.8^{+0.1}_{-0.1}$	\checkmark	\checkmark	-	$18.86^{+0.24}_{-0.24}$	$19.09^{+0.39}_{-0.36}$	$18.74_{-0.16}^{+0.17}$	$21.52^{+0.26}_{-0.29}$
Draco II	5.607e+11	152	156	$19.3^{+0.6}_{-0.6}$	\checkmark	\checkmark	\checkmark	-	$15.54^{+3.10}_{-4.07}$	$18.87^{+0.17}_{-0.15}$	-
Eridanus II	4.173e+11	97	72	$17.1^{+0.6}_{-0.6}$	-	\checkmark	\checkmark	-	-	-	-
Eridanus III	4.290e+11	107	113	$18.1^{+0.6}_{-0.6}$	-	-	\checkmark	-	-	-	-
Fornax	3.993e+11	92	125	$17.8^{+0.1}_{-0.1}$	\checkmark	\checkmark	\checkmark	$18.15_{-0.16}^{+0.16}$	$17.90^{+0.28}_{-0.16}$	-	-
Grus I	4.191e+11	109	105	$17.9^{+0.6}_{-0.6}$	-	\checkmark	-	$17.96^{+0.90}_{-1.93}$	-	-	-
Grus II	4.203e+11	145	154	$18.7^{+0.6}_{-0.6}$	-	\checkmark	-	-	-	-	-
Hercules	4.330e+11	234	222	$16.9^{+0.7}_{-0.7}$	\checkmark	\checkmark	\checkmark	$16.83^{+0.45}_{-0.45}$	$16.28^{+0.66}_{-0.57}$	-	-
Horologium I	4.394e+11	110	132	$18.2^{+0.6}_{-0.6}$	\checkmark	\checkmark	-	$18.64^{+0.95}_{-0.39}$	-	-	-
Horologium II	4.272e+11	102	102	$18.3^{+0.6}_{-0.6}$	-	\checkmark	-	-	-	-	-
Hydra II	4.012e+11	205	162	$17.8^{+0.6}_{-0.6}$	\checkmark	\checkmark	\checkmark	$16.56^{+0.87}_{-1.85}$	$13.26^{+2.12}_{-2.31}$	-	-
Indus II	4.376e+11	216	257	$17.4^{+0.6}_{-0.6}$	-	\checkmark	\checkmark	-	-	-	-
Kim 2	4.409e+11	198	201	$18.1^{+0.6}_{-0.6}$	-	-	\checkmark	-	-	-	-
Leo I	3.879e+11	128	138	$17.8^{+0.2}_{-0.2}$	\checkmark	\checkmark	\checkmark	$17.80^{+0.28}_{-0.28}$	$17.45_{-0.23}^{+0.43}$	-	-
Leo II	3.996e+11	111	83	$18.0^{+0.2}_{-0.2}$	\checkmark	\checkmark	\checkmark	$17.44^{+0.25}_{-0.25}$	$17.51^{+0.34}_{-0.28}$	-	-
Leo IV	3.670e+11	131	133	$16.3^{+1.4}_{-1.4}$	\checkmark	\checkmark	-	$16.64^{+0.90}_{-0.90}$	$15.31^{+1.58}_{-2.90}$	-	-
Leo T	3.993e+11	130	122	-	-	-	-	$17.32^{+0.38}_{-0.37}$	$16.75_{-0.53}^{+0.61}$	-	-
Leo V	3.682e+11	130	145	$16.4^{+0.9}_{-0.9}$	\checkmark	\checkmark	\checkmark	$16.94^{+1.05}_{-0.72}$	$16.24^{+1.26}_{-1.36}$	-	-
Pegasus III	3.753e+11	160	168	$17.5^{+0.6}_{-0.6}$	-	\checkmark	\checkmark	-	-	-	-
Phoenix II	4.314e+11	107	92	$18.1^{+0.6}_{-0.6}$	-	\checkmark	\checkmark	-	-	-	-
Pictor I	4.344e+11	112	109	$17.9^{+0.6}_{-0.6}$	-	\checkmark	\checkmark	-	-	-	-
Pisces II	3.718e+11	152	137	$17.6^{+0.6}_{-0.6}$	\checkmark	\checkmark	\checkmark	$17.90^{+1.14}_{-0.80}$	$15.94^{+1.25}_{-1.28}$	-	-
Reticulum II	4.423e+11	108	128	$18.9^{+0.6}_{-0.6}$	\checkmark	\checkmark	\checkmark	$18.71_{-0.32}^{+0.84}$	$17.76^{+0.93}_{-0.90}$	-	$21.67^{+0.33}_{-0.30}$
Reticulum III	4.612e+11	125	158	$18.2^{+0.6}_{-0.6}$	-	\checkmark	\checkmark	-	-	-	-
Sagittarius II	4.270e+11	319	312	$18.4^{+0.6}_{-0.6}$	-	\checkmark	\checkmark	-	-	-	-
Sculptor	3.897e+11	88	114	$18.5^{+0.1}_{-0.1}$	\checkmark	\checkmark	-	$18.65_{-0.29}^{+0.29}$	$18.42_{-0.17}^{+0.35}$	-	-
Segue 1	3.947e+11	128	154	$19.4_{-0.3}^{+0.3}$	\checkmark	\checkmark	\checkmark	$19.41_{-0.40}^{+0.39}$	$17.95_{-0.98}^{+0.90}$	$19.81_{-0.74}^{+0.93}$	$22.25_{-0.62}^{+0.37}$
Segue 2	4.072e+11	210	246	-	-	-	-	$17.11^{+0.85}_{-1.76}$	$13.09^{+1.85}_{-2.62}$	-	-
Sextans	3.699e+11	131	139	$17.5^{+0.2}_{-0.2}$	\checkmark	\checkmark	-	$17.87^{+0.29}_{-0.29}$	$17.71_{-0.21}^{+0.39}$	-	-
Triangulum II	4.383e+11	187	198	$19.1^{+0.6}_{-0.6}$	\checkmark	\checkmark	-	-	$20.44^{+1.20}_{-1.17}$	-	-
Tucana II	4.518e+11	121	128	$18.6^{+0.6}_{-0.6}$	\checkmark	\checkmark	-	$19.05_{-0.58}^{+0.87}$	-	-	-
Tucana III	4.500e+11	110	132	$19.3^{+0.6}_{-0.6}$	-	\checkmark	\checkmark	-	-	-	-
Tucana IV	4.517e+11	112	111	$18.7^{+0.6}_{-0.6}$	-	\checkmark	\checkmark	-	-	-	-
Tucana V	4.593e+11	118	101	$18.6^{+0.6}_{-0.6}$	-	-	\checkmark	-	-	-	-
Ursa Major I	4.823e+11	110	108	$17.9^{+0.5}_{-0.5}$	\checkmark	\checkmark	-	$18.48^{+0.25}_{-0.25}$	$17.48^{+0.42}_{-0.30}$	$18.67^{+1.75}_{-1.02}$	-
Ursa Major II	5.594e+11	182	225	$19.4^{+0.4}_{-0.4}$	\checkmark	\checkmark	-	$19.38^{+0.39}_{-0.39}$	$19.56^{+1.19}_{-1.25}$	$19.50^{+0.29}_{-0.30}$	-
Ursa Minor	5.701e+11	146	123	$18.9^{+0.2}_{-0.2}$	\checkmark	\checkmark	-	$19.15_{-0.24}^{+0.25}$	-	$19.12_{-0.12}^{+0.15}$	$21.69^{+0.27}_{-0.34}$
Willman 1	4.771e+11	108	113	$18.9^{+0.6}_{-0.6}$	\checkmark	\checkmark	\checkmark	$19.29\substack{+0.91 \\ -0.62}$	-arX	(iv:1802	2.03826

Statistics

- Stacking of targets: $P_{\text{bgd}}^{\text{tot}}(N_{\text{bgd}}^{\text{tot}}) \equiv \sum_{\sum_{i} N_{\text{bgd}}^{i} = N_{\text{bgd}}^{\text{tot}}} \prod_{i} P_{\text{bgd}}^{i}(N_{\text{bgd}}^{i})$
 - Total number of observed photons: $N_{\text{obs}}^{\text{tot}} = \sum_{i} N_{\text{obs}}^{i}$
- Assume Poisson-distributed number of expected signal photons:

$$P_{\rm DM}^{\rm tot}(N_{\rm DM}^{\rm tot};\overline{N}_{\rm DM}^{\rm tot}) = e^{-\overline{N}_{\rm DM}^{\rm tot}} \frac{(\overline{N}_{\rm DM}^{\rm tot})^{N_{\rm DM}^{\rm tot}}}{N_{\rm DM}^{\rm tot}!}$$

• Upper bound on the expected number of photons from DM annihilation (at confidence level β) is $N_{\text{bound}}(\beta)$:

$$\sum_{N_{\text{bgd}}^{\text{tot}}+N_{\text{DM}}^{\text{tot}}>N_{\text{obs}}^{\text{tot}}} P_{\text{bgd}}^{\text{tot}}(N_{\text{bgd}}^{\text{tot}}) \times P_{\text{DM}}^{\text{tot}}(N_{\text{DM}}^{\text{tot}}; N_{\text{bound}}(\beta)) = \beta$$

Statistics

- Stacking of targets: $P_{\text{bgd}}^{\text{tot}}(N_{\text{bgd}}^{\text{tot}}) \equiv \sum_{\sum_{i} N_{\text{bgd}}^{i} = N_{\text{bgd}}^{\text{tot}}} \prod_{i} P_{\text{bgd}}^{i}(N_{\text{bgd}}^{i})$
 - Total number of observed photons: $N_{\text{obs}}^{\text{tot}} = \sum_{i} N_{\text{obs}}^{i}$
- Assume Poisson-distributed number of expected signal photons:

$$P_{\rm DM}^{\rm tot}(N_{\rm DM}^{\rm tot};\overline{N}_{\rm DM}^{\rm tot}) = e^{-\overline{N}_{\rm DM}^{\rm tot}} \frac{(\overline{N}_{\rm DM}^{\rm tot})^{N_{\rm DM}^{\rm tot}}}{N_{\rm DM}^{\rm tot}!}$$

• Upper bound on the expected number of photons from DM annihilation (at confidence level β) is $N_{\text{bound}}(\beta)$:

$$\sum_{N_{\text{bgd}}^{\text{tot}}+N_{\text{DM}}^{\text{tot}}>N_{\text{obs}}^{\text{tot}}} P_{\text{bgd}}^{\text{tot}}(N_{\text{bgd}}^{\text{tot}}) \times P_{\text{DM}}^{\text{tot}}(N_{\text{DM}}^{\text{tot}}; N_{\text{bound}}(\beta)) = \beta$$

• Upper bound on the expected number of photons from DM annihilation (at confidence level β) is $N_{\text{bound}}(\beta)$:

$$\sum_{N_{\text{bgd}}^{\text{tot}}+N_{\text{DM}}^{\text{tot}}>N_{\text{obs}}^{\text{tot}}} P_{\text{bgd}}^{\text{tot}}(N_{\text{bgd}}^{\text{tot}}) \times P_{\text{DM}}^{\text{tot}}(N_{\text{DM}}^{\text{tot}}; N_{\text{bound}}(\beta)) = \beta$$

$$\overline{N}_{\rm DM} = \Phi_{\rm PP} \times J(\Delta\Omega) \times (T_{\rm obs}\bar{A}_{\rm eff})$$

$$\overline{N}_{\rm DM} = \Phi_{\rm PP} \times J(\Delta\Omega) \times (T_{\rm obs} \overline{A}_{\rm eff})$$

$$\Phi_{\rm PP} = \frac{(\sigma v)_0}{8\pi m_X^2} \int_{E_{\rm th}}^{E_{\rm max}} dE_{\gamma} \frac{dN_{\gamma}}{dE_{\gamma}} \frac{A_{\rm eff}(E_{\gamma})}{\overline{A}_{\rm eff}}$$

$$J(\Delta\Omega) = \int_{\Delta\Omega} d\Omega \int d\ell \int d^3 v_1 f(r(\ell,\Omega), \vec{v}_1) \int d^3 v_2 f(r(\ell,\Omega), \vec{v}_2) \times S(|\vec{v}_1 - \vec{v}_2|)$$

$$\overline{N}_{\rm DM} = \Phi_{\rm PP} \times J(\Delta\Omega) \times (T_{\rm obs}\bar{A}_{\rm eff})$$

$$\Phi_{\rm PP} = \frac{(\sigma v)_0}{8\pi m_X^2} \int_{E_{\rm th}}^{E_{\rm max}} dE_\gamma \frac{dN_\gamma}{dE_\gamma} \frac{A_{\rm eff}(E_\gamma)}{\bar{A}_{\rm eff}}$$

$$\sigma v = (\sigma v)_0 \times S(v)$$

$$J(\Delta\Omega) = \int_{\Delta\Omega} d\Omega \int d\ell \int d^3 v_1 f(r(\ell,\Omega), \vec{v}_1) \int d^3 v_2 f(r(\ell,\Omega), \vec{v}_2) \times S(|\vec{v}_1 - \vec{v}_2|)$$

• Following Geringer-Sameth and Koushiappas (2011), we constrain models that could have produced an excess over background.

Note: for decay, $(\sigma v)_0/2m_X \to \Gamma$ and $J \to J_D \equiv \int_{\Delta\Omega} d\Omega \int d\ell \rho$

• Following Geringer-Sameth and Koushiappas (2011), we constrain models that could have produced an excess over background.

$$\overline{N}_{\rm DM} = \Phi_{\rm PP} \times J(\Delta\Omega) \times (T_{\rm obs}\bar{A}_{\rm eff})$$
$$\Phi_{\rm PP}^{\rm bound}(\beta) \equiv N_{\rm bound}(\beta) \left[\sum_{i} J^{i} \times (T_{\rm obs}\bar{A}_{\rm eff})^{i}\right]^{-1}$$

P. Sandick

arXiv:1802.03826

Results

Constrain DM properties: $\Phi_{\rm PP} = \frac{(\sigma v)_0}{8\pi m_Y^2} \int_{E_{\rm PP}}^{E_{\rm max}} dE_{\gamma} \frac{dN_{\gamma}}{dE_{\gamma}} \frac{A_{\rm eff}(E_{\gamma})}{\bar{A}_{\rm eff}}$

Results

Results

• Constrain DM properties: $\overline{N}_{DM} = \Phi_{PP} \times J(\Delta \Omega) \times (T_{obs} \overline{A}_{eff})$

MADHAT: Model-Agnostic Dark Halo Analysis Tool

Jason Kumar (UH), Kim Boddy (JHU) Stephen Hill (UH)

- Everyone should be able to do this analysis!
 - Stand-alone code
 - Interface with GAMBIT and others

- Inputs: dwarf set and J factors; integrated spectrum of photons in relevant energy range, DM mass
- Outputs: Nbound, PhiPP, cross section limit (if relevant)
- Status: code works, release soon (~1 month)

MADHAT: Model-Agnostic Dark Halo Analysis Tool

Jason Kumar (UH), Kim Boddy (JHU) Stephen Hill (UH)

Journal of Cosmology and Astroparticle Physics

On velocity-dependent dark matter annihilations in dwarf satellites

Mihael Petač^{a,b}, Piero Ullio^{a,b} and Mauro Valli^c Published 20 December 2018 • © 2018 IOP Publishing Ltd and Sissa Medialab Journal of Cosmology and Astroparticle Physics, Volume 2018, December 2018

Summary

- We constrain the number of DM annihilation photons, completely independent of DM particle physics model or DM astrophysics.
 - estimate the number of background (+foreground) photons empirically
 - constrain the number of DM signal photons statistically
- There is a minor loss of sensitivity relative to model-dependent searches, but this is an important tool in light of new J-factor determinations and for DM models for which standard analyses are not applicable.
 - eg. multi-body annihilation final states, final-state cascades, multicomponent DM, nontrivial velocity dependence, etc.
- MADHAT and GAMBIT-integrated version coming soon!