A Solar System Test of Self-Interacting Dark Matter

Cristian Gaidau University of Illinois Urbana-Champaign 23 May 2019 arXiv:1811.00557 (CG and Jessie Shelton)

Outline

- Indirect Detection of Dark Matter (DM) in the Solar System: DM capture by the Sun/Earth.
- Modifications to Sun/Earth-captured DM due to DM Self-Interactions (SI).
- Construct and describe an observational probe of SIDM based on Sun/Earth-captured DM.

Indirect Detection of DM in the Solar System

Indirect Detection of DM in the Solar System

Modelling Captured DM Population

- Annihilation rate of (Sun-captured) DM: $\Gamma_{\rm a} = \frac{1}{2} C_{\rm a} N^2(\tau_{\rm Sun})$
- σ_p : Assume a spin independent DM-nucleon interaction.
- $<\sigma_{ann}v>$: s-wave. Fixed by relic abundance constraint.

Simplest DM Population Model

$$\dot{N} = C_c - C_a N^2$$

- General solution: $N(t) = N_{0,eq} \tanh\left(\frac{t}{\tau}\right)$ $N_{0,eq} = \sqrt{\frac{C_c}{C_a}}$
- Equilibrium is reached if t_s

$$S_{Sun} \gtrsim \tau = \frac{1}{\sqrt{C_c C_a}}$$

- At equilibrium: $\Gamma_a = \frac{1}{2}C_c$
- Annihilation flux:

$$\Phi_{\rm ann} = \frac{\Gamma_{\rm a}}{4\pi R^2}$$

Annihilation Flux in the Sun

Annihilation Flux in the Sun

Annihilation Flux in the Earth

What if DM self-interacts?

• New kinematic channels appear.

Self-Capture: Halo DM + Captured DM -> Captured DM + Captured DM

What if DM self-interacts?

• New kinematic channels appear.

Self-Capture: Halo DM + Captured DM \rightarrow Captured DM + Captured DM

Self-Ejection: Halo DM + Captured DM \rightarrow Halo DM + Halo DM

SIDM Population Dynamics

$$C_{sc/se} = C_{sc/se} (M_{DM}, \sigma_{xx})$$

 σ_{xx} - self-interaction cross-section. Our modelling assumes a constant σ_{xx} (no velocity or angular dependence).

SIDM Population Dynamics

$$\dot{N} = C_c + (C_{sc} - C_{se})N(t) - C_a N^2(t).$$

Zentner, Andrew R. "High-energy neutrinos from dark matter particle self-capture within the Sun." *Physical Review D* 80.6 (2009): 063501.

Sun-Captured SIDM

 Self-Interactions <u>enhance</u> the Sun-captured DM population. Enhanced DM annihilation rate and flux of SM annihilation products.

Earth-Captured SIDM

 Self-Interactions <u>deplete</u> the Earth-captured DM population. Suppression of the DM annihilation rate and flux of SM annihilation products.

Sun/Earth-Captured SIDM

Sun

Earth

DM speed in the Halo: ~ $300 \frac{km}{s}$, while:

Sun: $v_{esc} \sim 600 \frac{km}{s} \rightarrow \text{ self-capture more likely}$

Earth: $v_{esc} \sim 12 \frac{km}{s} \rightarrow \text{ self-ejection more likely}$

[[]CG, Shelton]

Can we exploit the fact that Self-Interactions affect the Sun and Earthcaptured DM populations differently?

Sun and Earth fluxes depend on the same DM inputs

$$\Phi^{\text{Sun}} = \Phi^{\text{Sun}}(M_{\text{DM}}, \sigma_{\text{p}}, \sigma_{\text{xx}}, <\sigma_{\text{V}})$$

$$\Phi^{\text{Earth}} = \Phi^{\text{Earth}}(M_{\text{DM}}, \sigma_{\text{p}}, \sigma_{\text{xx}}, <\sigma_{\text{V}})$$

Fixed by the relic density constraint

If $\sigma_{xx}=0$, a measurement of the Sun flux Φ_m^{Sun} would predict a unique Earth-flux:

$$\Phi_{p}^{\text{Earth}} = \Phi^{\text{Earth}}(M_{DM}, \Phi_{m}^{\text{Sun}}).$$

We call this the "null" prediction.

 If σ_{xx}≠0, must account for the enhancement of the Suncaptured population and depletion of the Earth-captured DM population:

$$\Phi_{p}^{\text{Earth}} = \Phi^{\text{Earth}}(M_{\text{DM}}, \sigma_{xx}, \Phi_{m}^{\text{Sun}})$$

 A subsequent measurement of Φ^{Earth} can reveal the strength of self-interactions if this measured flux is different from the null prediction.

Self-Interactions "distort" the Earth flux predictions

$$R \equiv \frac{\Phi_{\oplus}^{(p)}(M_{\rm DM}, \sigma_{\rm xx}; \Phi_{\odot}^{\rm m})}{\Phi_{\oplus}^{(0)}(M_{\rm DM}; \Phi_{\odot}^{\rm m})}$$

$$R \approx \left(\frac{1 - \frac{C_{\odot sc}}{2}\tau_{\odot}}{1 + \frac{C_{\oplus se}}{2}\tau_{\oplus}}\right)^2$$

Conclusions

 DM Self-Interactions affect the Sun and Earth-captured DM populations in "opposite" ways – enhancement in the former and depletion in the latter case.

- The fractional suppression of the captured DM annihilation flux can be orders of magnitude, providing a striking signature of self-interactions.
- A measurement of the annihilation fluxes of Sun and Earthcaptured DM constitutes a diagnostic test of DM Self-Interactions. (Caveat: Observationally viable only for spinindependent DM-nucleon cross-section.)

Back-Up Slides

Construction of C_c

$$C_c = \int_0^R d^3 \vec{r} \sum_i \frac{dC_{c,i}}{dV}$$

$$\frac{dC_{c,i}}{dV} = \int d^3 u f(u) \frac{\sqrt{u^2 + v_{esc}^2(r)}}{u} n_i(r) n_{\rm DM} \sqrt{u^2 + v_{esc}^2(r)} \sigma_{cap}$$

Construction of C_c

$$C_c = \int_0^R d^3 \vec{r} \sum_i \frac{dC_{c,i}}{dV}$$

Nuclear species in the Sun/Earth

Construction of C_c

$$C_c = \int_0^R d^3 \vec{r} \sum_i \frac{dC_{c,i}}{dV}$$

$$\frac{dC_{c,i}}{dV} = \int d^3 u f(u) \frac{\sqrt{u^2 + v_{esc}^2(r)}}{u} n_i(r) n_{\rm DM} \sqrt{u^2 + v_{esc}^2(r)} \sigma_{cap}$$

IceCube Collaboration. arXiv:1212.4097v2 [astro-ph.HE]

IceCube Collaboration. arXiv:1212.4097v2 [astro-ph.HE]