

SuperCDMS SNOLAB

Andrew Kubik

on behalf of the SuperCDMS Collaboration

SUSY2019 May 21, 2019

SuperCDMS

AMS-02

Annihilation in Cosmos

LUX

LHC

Production in Colliders

CMS

SuperCDMS

Recoil Energy [keVrn]

- Start with a small signal and relatively huge radioactive background
- Reduce and Reject background
- Lower threshold

- Low Mass DM models
 - Not just WIMPS and not just nuclear recoils!
 - Asymmetric
 Dark Matter
 - Dark Sector
 - Many more ...

- SuperCDMS SNOLAB focuses on low mass DM region
 - Over three orders of magnitude better sensitivity
 - Driven by improvements in detector design, better background control, more exposure, and lower thresholds

Kurinsky et. al. , arXiv:1611.04083

- Light DM searches require very low energy thresholds
 - Example, rate vs. recoil energy for very light WIMPs

General Idea:

F

Charge Propagation

Resulting Luke Phonons

'Prompt' Phonons

- Cryogenically cooled Ge or Si crystal
- DM recoils off nucleus in target, creating athermal phonons and liberating electron hole pairs
- Phonons read out using Transition Edge Sensor array
- Electrons/holes drifted to surfaces by applied Voltage bias

Holes

Germanium

Phonons

- Athermal phonons are collected in Al fins on surface, breaking Cooper pairs to create quasi-particles
- QPs travel to tungsten TES bringing heat which quickly alters the resistance, supplying the signal

$$\begin{split} E_{total} &= E_{recoil} + E_{luke} \\ &= E_{recoil} + Qe\Delta V \\ &= E_{recoil} \left(1 + \frac{Ye\Delta V}{\langle E_{eh} \rangle} \right) \end{split}$$

- Electron recoils create electron-hole pairs
 - 1 eh pair per ~2.9 eV in Ge, ~3.6 eV in Si
 - Nuclear recoils not so easy
 - Use Lindhard scaling law to predict ionization as function of recoil energy
 - Ionization is LESS than that for equivalent electron recoil
- Can exploit difference in ionization yield to discriminate electron and nuclear recoils

Failing Charge Symmetry Selection Passing Charge Symmetry Selection O Low Yield Outliers ±2σ Nuclear Recoil Yield Selection Ionization Yield 0.2 20 40 60 80 100 Recoil Energy [keVr] Failing Charge Symmetry Selection Passing Charge Symmetry Selection Neutrons from Cf–252 Calibration Source O Low Yield Outliers

- Exploit ionization yield differences in electron and nuclear recoils to discriminate
- Interweaved electrodes create trapping field near surface to discriminate surface and bulk events

HV Detectors

- In iZIP detectors, discrimination only good down to ~ 1 keV, limited by ionization measurement noise
- As charge carriers traverse crystal, they create secondary (Luke) phonons
- The higher the field, the more Luke phonons created
- Increase the bias, measure the phonons. Basically a charge amplifier (which doesn't amplify the noise!)

SuperCDMS Soudan

- 15 Ge iZIP detectors (9 kg)
- HV mode: CDMSlite (using iZIP detectors)
- Operational until late 2015

Soudan Results

Phys. Rev. D 99, 062001 (2019))

- Many great results from SuperCDMS Soudan
- Recently CDMSlite analysis pushed low mass WIMP limits to uncharted territory

SuperCDMS SNOLAB

Background Improvements

Shielding and Simulation

SNOLAB shielding design

Detailed simulation of detector tower components.

HV Backgrounds

- ³²Si and ³H limiting backgrounds
 - $-\beta$ -decay in detector bulk
 - ³H produced cosmogenically in Ge and Si, builds up over time (τ = 12.3 years)
- Surface Betas Surface 206Pb Neutrons CNS ³²Si produced cosmogenically from argon in atmosphere, seeps into natural Si and ends up in crystals
 - Some control by limiting surface exposure of components and detectors

Improved Environmental Backgrounds

- Other backgrounds controlled to be $< {}^{3}H$ and ³²Si levels by:
 - 6000 M.W.E.
 - Better screening of materials
 - Shielding design improvements
 - Better radon mitigation (both in lab and during fabrication) and surface radon removal

CNS

Improved Detectors

- Bigger (more fiducial volume in proportion to surface area)
- Larger voltage bias
- Faster phonon pulses, more position information
- Lower T_c (better noise and resolution)
- Resolution approaching level of single electron-hole pair (for HV)

	iZ	\mathbf{IP}	HV	
	Ge	\mathbf{Si}	Ge	\mathbf{Si}
Number of detectors	10	2	8	4
Total exposure $(kg \cdot yr)$	56	4.8	44	9.6
Phonon resolution (eV)	50	25	10	5
Ionization resolution (eV)	100	110	_	_
Voltage Bias (V)	6	8	100	100

Detector Improvements

Projected Sensitivity

Future SNOLAB Upgrades

HVeV Detector

- Prototype ultra-low threshold phonon detector
- 1 cm² Si, ~1 gram
- First science run: 11.7 gram-hours
- First phonon detector to measure single e⁻h⁺ pairs

- Much work already towards reaching the neutrino floor:
- More detectors
 - SNOLAB cryostat designed to hold up to 15 detector towers
 - Design flexible to hold other detector designs
- Lower and better understood backgrounds
 - ER/NR discrimination in HV detectors at lowest recoil energy around single electron-hole pair resolution
 - Improvements in physics modeling of low energy backgrounds

Better calibrations

- Nuclear recoil calibrations with photo-neutron source, thermal neutron capture recoils, mono-energetic neutron beam (TUNL)
- understand Ionization yield down to lowest energy recoils

Lower thresholds

 Detector improvements allowing much higher voltage bias, more signal amplification, single electron/hole counting

- SuperCDMS SNOLAB is gearing up
- 4-tower initial payload for 5 years (2020-2024)
 - 25 kg Ge, 3.6 kg Si
 - iZIP (full discrimination) and HV (low threshold) detectors
 - Sensitivity projections have been released
- Prototype small (gram scale) detectors have reached single e⁻h⁺ sensitivity
- Future improvements with aim to reach neutrino floor

BACKUP

US Cosmic Visions: arXiv:1707.04591

- Orange = zero bias voltage operation
- Gray = Using standard Lindhard model for ionization yield in Si

- Green = varying ³H x3
- Blue = varying ³²Si x10 (up) to 0 (down)
- Purple = both ³²Si and ³H at x0

		Production Rate Concentration				$7\sigma_{Ph} e\Delta V$ Analysis threshold (ysis threshold (eV)
		(atoms/kg/day)	(decays/kg/day)		Detector	(eV)	(eV)	E_{Ph}	E_{nr}
Material	Isotope		HV	iZIP	Si HV	35	100	100	78
Ge	$^{3}\mathrm{H}$	80	0.7	1.5	Ge HV	70	100	100	40
\mathbf{Si}	$^{3}\mathrm{H}$	125	1	2	Si iZIP	175	8	175	166
\mathbf{Si}	$^{32}\mathrm{Si}$	_	80	80	Ge iZIP	350	6	350	272

"Singles" Background Rates	Electron Recoil			Nuclear Recoil $(\times 10^{-6})$		
$(\mathrm{counts/kg/keV/year})$	Ge HV	Si HV	Ge iZIP	Si iZIP	Ge iZIP	Si iZIP
Coherent Neutrinos					2300.	1600.
Detector-Bulk Contamination	21.	290.	8.5	260.		
Material Activation	1.0	2.5	1.9	15.		
Non-Line-of-Sight Surfaces	0.00	0.03	0.01	0.07	-	—
Bulk Material Contamination	5.4	14.	12.	88.	440.	660.
Cavern Environment	—	-	_	_	510.	530.
Cosmogenic Neutrons					73.	77.
Total	27.	300.	22.	370.	3300.	2900.

5/21/19

SuperCDMS SNOLAB - SUSY 2019

$$\sigma_{E}^{2} = \frac{2nKk_{b}T_{c}^{n+1}}{\varepsilon^{2}} \left(\tau_{pulse} + \frac{2}{n}\tau_{TES} \right) \stackrel{n=5,\tau_{pulse}>\tau_{TES}}{\longrightarrow} \frac{10Kk_{b}T_{c}^{6}}{\varepsilon^{2}} \tau_{pulse}$$

• Phonon Energy Resolution

