#### Fermilab DEPARTMENT OF Office of Science



# Search for Supersymmetry at a 100 TeV (and 27 TeV) Future Circular Collider

Anadi Canepa SUSY2019, 20-24th May 2019

## Strategy

- Targeted and significant effort to build a global vision for high energy particle physics
- Comprehensive <u>documentation</u> on proposed colliders submitted in preparation for the <u>Granada</u> <u>Symposium</u>

| Collider | $\sqrt{s}$ (TeV) | No. Det. | Pile Up | Luminosity $(ab^{-1})$ | Start       | Duration (years) |
|----------|------------------|----------|---------|------------------------|-------------|------------------|
| HE-LHC   | 27               | 2        | 800     | 15                     | $\sim 2050$ | 20               |
| FCC-hh   | 100              | 2        | 1000    | 30                     | $\sim 2060$ | 25               |

Reach of HL-LHC in Cervelli's talk

- Searches carried out using different approaches (full analyses based on parameterized simulation, extrapolation of LHC and HL-LHC analyses, scaling of results using partonic distributions)
  - assumptions on background composition and yields driven by knowledge acquired in analyzing LHC data, but impact of pile up and rare process may require further investigation
  - ◆ at the same time, detector layout, reconstruction and selection algorithms expected to be optimized in the next decades ⇒ most likely, conservative projections presented today

### Outline

- Supersymmetry might manifest in different ways at hadron colliders
- Simplified models adopted in setting the search strategy and illustrating the reach for individual processes
- Focus on representative benchmark processes at pp machines
  - search for gluinos (RPC decays; compressed spectra)
  - search for scalar top quarks (RPC decays; co-annhilation scenarios)
  - search for electroweakinos (RPC decays, co-annihilation scenarios)
  - search for scalar tau leptons
- Additional studies in references listed in back-up slides



### **Searches for gluinos (1)**

1000

100

10

uminosity ratio

ratios of LHC parton luminosities:

gg

Σαα

28 TeV / 7 TeV and 28 TeV / 14 TeV

WJS201

- Cross-sections for strongly produced (and ~heavy) SUSY particles expected to increase significantly with √s
  - At 2 TeV, σ(FCC-hh) ~ 4000 x σ(LHC) (LHC SUSY Cross Section Working Group, 1407.5066)
- Searches for un-compressed spectra benefitting greatly from presence of large ETmiss, HT, and highly boosted SM objects, especially at FCC-hh



p

### **Searches for gluinos (2)**

- Further extension of sensitivity achieved for scenarios with nondecoupled squarks
  - constructive interference





 Monojet-like searches, powerful probes for scenarios with compressed spectra





#### **Searches for scalar top quarks**



 $\Delta R \sim 1/\gamma_t \sim m_t/p_T^t$ 

CERN-ACC-2018-0056

10000

#### **Searches for scalar top quarks**

- Compressed region probed with monojet and low pT momentum analyses
- Extrapolations of Run-2 searches using 'ColliderReachTool'
  - ♦ HE-LHC, 3 TeV
  - ♦ FCC-hh, 7.5 TeV

for ∆m=2-10 GeV





## **Confronting Natural SUSY (1)**



### **Confronting Natural SUSY (2)**



### **Search for EWK-inos**

- Strategy of EWK-inos search driven by the mass scales, in turn governing the mass splitting and decay modes
- Classical searches for non compressed spectra based on final states with multi-leptons, one lepton & jets (WZ mode), or one lepton & b-jets (Wh mode)





1410.6287 (full models, using multi-lep signatures only

| _ |                          | $5\sigma$                 | 95% CL                    |
|---|--------------------------|---------------------------|---------------------------|
| _ | (NLSP, LSP)              | discovery                 | exclusion                 |
|   | $(\tilde{W}, \tilde{H})$ | $(2.2, 0.8) \mathrm{TeV}$ | $(3.3, 1.3) \mathrm{TeV}$ |
|   | $(\tilde{H}, \tilde{W})$ | $(1.5,0.6)\mathrm{TeV}$   | $(2.6, 1.0) \mathrm{TeV}$ |
|   | $(	ilde{H},	ilde{B})$    | $(1.8,0.7)\mathrm{TeV}$   | $(2.9, 1.1) \mathrm{TeV}$ |
| _ | $(\tilde{W}, \tilde{B})$ | $(3.2, 1.4) \mathrm{TeV}$ | $(4.2, 2.2) \mathrm{TeV}$ |



### Search for higgsinos-like EWK-inos

- Scenarios with higgsinos only at low mass scale (μ«M1, M2) characterized by small mass splitting between light states (approx. 0.5 GeV)
  - Δm ~ GeV probed with ISR & soft lepton signatures
  - MeV < Δm < GeV probed with mono-jet and 'disappearing track' signature





#### **Search for wino-like EWK-inos**

- Wino-like EWK-inos characterized by even smaller mass splitting between the chargino and the LSP (approx. 0.2 GeV)
  - can be probed using disappearing track (and some sensitivity from mono-jet/photon signatures)



Monojet: 5σ at 200 GeV, HE-LHC; 5σ at 600 GeV, FCC-hh in conservative scenario



#### Search for scalar tau leptons

 Tau sleptons expected to be light, exhibiting however low and helicity dependent cross-section (σ<sub>τLτL</sub> ~ 3 x σ<sub>τRτR</sub>)



Potential extension of sensitivity in co-annihilation corridor using ISR signatures FCC-hh, extension of sensitivity up to 3-4TeV based on partonic extrapolation

1310.2621

#### Conclusions

 Future pp colliders exhibit an unprecedented potential for discovery of of strongly and weakly produced supersymmetry

| Sparticle                | HE-LHC                       | FCC-hh                       |
|--------------------------|------------------------------|------------------------------|
| $\operatorname{gluinos}$ | 5 TeV $(5\sigma)$            | 10 TeV $(5\sigma, 3/ab)$     |
| $\operatorname{stops}$   | $3 { m TeV} (95\% { m C.L})$ | 10 TeV $(5\sigma, 30/ab)$    |
| higgsinos                | $0.5 { m TeV} (5\sigma)$     | $0.8 \text{ TeV} (5\sigma)$  |
| winos                    | $1.5 \text{ TeV} (5\sigma)$  | 4.0 TeV $(5\sigma)$          |
| staus                    | $0.8 \text{ TeV} (5\sigma)$  | 3-4 TeV (5 $\sigma$ extrap.) |

Conservative scenarios

- Current analysis techniques have already allowed to explore challenging regions of parameter and phase space (e.g. low cross-section processes and compressed spectra)
  - further improvements to be expected when innovative object reconstruction and event selection algorithms are refined and will exploit information from new sub-detectors (*e.g.* advanced triggers, timing information, etc.)

#### **Nice readings**

1406.4512 1804.08642 CERN-ACC-2019-0006 1406.4512 1808.04844 1407.7058 1810.11263 FTR-18-013 1410.6287 1810.11263 FTR-18-017 1504.06108 1812.07831 FTR-18-037 1505.04702 1901.02987 1606.00947 1901.10389 1612.00795 1902.10229 1612.03978

CERN-ACC-2018-0044 1702.06588 CERN-ACC-2018-0056 1708.09054 CERN-ACC-2018-0059 1712.02729.pdf CERN-ACC-2019-0005



### **PDF Uncertainties on gluinos pair production**



16