A key variable:
Missing Transverse Momentum -
reconstruction, pile-up and its significance

SUSY2019, Corpus Christi, 20 - 24 May 2019

Xuanhong Lou
Deutsches Elektronen-Synchrotron

For the ATLAS collaboration
Introduction

What is missing transverse momentum (MET)

- MET - total transverse momentum of the invisible particles

\[E_{T}^{\text{miss}} = \sum_{\text{invisible particles}} \vec{p}_{T,i} = - \sum_{\text{visible particles}} \vec{p}_{T,i} \]

- Two sources of MET
 - Real MET:
 weakly interacting particles
 - Fake MET:
 particle out of detector acceptance
 mis-measured objects
 additional interaction (pile-up)

- MET performance is very important for many ATLAS analyses!
 - Improved resolution, better distinction between real and fake MET, etc.
Introduction

Resolution of MET

- Negative vector sum of calibrated objects (hard term) plus soft term

\[E_T^{\text{miss}} = - \left(\sum_{i \in \text{muons}} p_T^i + \sum_{i \in \text{electrons}} p_T^i + \sum_{i \in \text{photons}} p_T^i + \sum_{i \in \text{hadronic } \tau} p_T^i + \sum_{i \in \text{jets}} p_T^i + \sum_{i \in \text{Soft Term}} p_T^i \right) \]

- Resolution of MET
 - RMS extracted from the combined distribution of E_{x}^{miss} and E_{y}^{miss}
 - Dependent on the resolution of input objects

Blue: only uses tracker information
Green: uses tracker-based soft term
Black: uses calorimeter-based soft term
Introduction

MET performance in the ATLAS experiments (2017 - 2018)

Reconstruction input
- Hard term including calorimeter jets
- Tracker-based soft term (TST)

Jet selection
- Central jets ($|\eta| < 2.4$):
 - pass Jet Vertex Tagger requirement
 - transverse momentum (p_T) > 20 GeV
- Forward jets ($|\eta| > 2.4$):
 - transverse momentum (p_T) > 30 GeV

$<\mu>$ - average number of interaction
- Higher $<\mu>$ indicates higher pile-up

Jet Vertex Tagger (JVT)
- A multivariate approach to reject pile-up objects via jet-vertex association

Graph

ATLAS Preliminary

Z $\rightarrow \mu\mu$ Topology
Track Soft Terms (TST)
EM + JES Jets
Tight E^{miss}_T

- Data 17, 33 fb$^{-1}$
- Data 18, 6.5 fb$^{-1}$

JETM-2018-004
Towards higher precision

Particle Flow (PFlow) reconstruction

- Particle Flow (PFlow) MET
 - Combine the optimal resolution of tracker and calorimeter information
 - Higher accuracy of the charged-hadron measurement
 - Retaining the calorimeter measurements of neutral-particle energies

ATLAS Preliminary

$\sqrt{s} = 13$ TeV, 140 fb$^{-1}$

Z → ee Selection

![Graph showing data and theoretical predictions for Z → ee selection.]

ATLAS Preliminary

$\sqrt{s} = 13$ TeV, 36 fb$^{-1}$

Loose E_T^{miss}

$Z \rightarrow \text{ee}$

![Graph showing E_T^{miss} RMS resolution vs. average number of interactions $\langle \mu \rangle$.]
Towards higher precision

- PFlow MET is nice, but what about the forward region?
 - Inclusion of forwards jets is crucial to MET reconstruction
 - more precise MET computation under low pile-up condition
 - more pronounced pile-up dependence

- Forward jet selection (pile-up rejection)
 - Simple p_T cut: $p_T > 30$ GeV
 - Forward Jet Vertex Tagger (fJVT)

ATLAS Simulation

Powheg+Pythia8 $Z \rightarrow \mu\mu$

\(\sqrt{s} = 13\) TeV

Anti-k_T, EM+JES R=0.4

$E_T > 20$ GeV

FTAG

Forward jets included in E_T^{miss}

Forward jets not included in E_T^{miss}

MET significance

Object-based MET significance

- Evaluation of MET significance
 - Is the reconstructed MET consistent with the zero MET hypothesis, when taking the resolution of all input objects into account?
 - High MET significance means:
 MET cannot be explained from momentum resolution effects indicate the presence of true invisible particle

- Object-based MET significance
 - Compared to the traditional event-based MET significance, object-based MET significance considers the expected resolutions for all objects entering MET computation and their angular correlation
 - Momentum resolution on p_T scale and direction, pile-up mitigation and soft term...

\[S = \frac{E_{\text{miss}}}{\sigma(E_{\text{miss}})} \]
Performance of MET significance dependent on event topology

- $ZZ \rightarrow ee\nu\nu$ vs. $Z \rightarrow ee$, pre-selected with MET > 50 GeV and $|m_Z - m_{ee}| < 15$ GeV

Jet Veto

ATLAS
Simulation Preliminary
\[\sqrt{s} = 13 \text{ TeV}, 36 \text{ fb}^{-1} \]

ee-channel
$|m_Z - m_{ee}| < 15$ GeV
$E_T^{\text{miss}} > 50$ GeV,
 MET significance

Application of object-based MET significance in SUSY: sbottom multi-b

- Search for bottom-squark pair production in final states containing Higgs bosons, b-jets and missing transverse momentum
 - Multiple b-jets + no lepton + MET (from neutralinos)
 - Three kinematic topologies - SRA, SRB and **SRC**

SRC Target

- In SRC the ΔR-based Higgs reconstruction is ineffective due to low b-jet multiplicity
- Object-based MET significance becomes the best discriminating variable in SRC

Small mass splitting between \tilde{b}_0 and $\tilde{\chi}_2^0$, $m(\tilde{\chi}_1^0) = 60$ GeV

Soft b-jets from \tilde{b}_0 and Higgs, lower b-jet multiplicity required in the final state

Discriminating variable: **object-based MET significance**
MET significance

Application of object-based MET significance in SUSY: sbottom multi-b

Integrated expected significance for scalar signal, \(m(\tilde{b}_0, \tilde{\chi}_i^0, \tilde{\chi}_j^0) = (1100, 1095, 60) \text{ GeV}\)
All standard model backgrounds and total uncertainty taken into consideration

Aside from sbottom multi-b, another recent SUSY search also uses object-based MET significance as one of the discriminating variables: **EW 2LoJ**

Search for electroweak production of charginos and sleptons decaying in final states with two leptons and missing transverse momentum

Xuanhong Lou | A key variable: Missing Transverse Momentum - reconstruction, pile-up and its significance | 22 May 2019 | Page 10
Summary

- **Missing transverse momentum (MET)**
 - Used in many ATLAS analyses
 - *Distinguish between real and fake MET*

- **Efforts are made to improve MET performance**
 - Usage of **Particle Flow jets**
 - **Forward jet selections**

- **Object-based MET significance**
 - Considers *the resolution of all objects*
 - Better discriminating power wrt. the traditional approach
 - Used in several SUSY searches, e.g. **sbottom multi-b**

Thanks for your attention!
Reconstruction performance of MET is evaluated using data collected by the ATLAS detector in 2017 and 2018

- Hard term including calorimeter jets + tracker-based soft term
- Pile-up (PU) suppression

 - Central jets ($|\eta| < 2.4$): pass Jet Vertex Tagger, $p_T > 20$ GeV
 - Forward jets ($|\eta| > 2.4$): $p_T > 30$ GeV
Towards higher precision

Particle Flow (PFlow) reconstruction

4 steps of the PFlow algorithm

1. Match each track to one topo-cluster
2. Add neighbouring topo-clusters if higher energy deposit is expected in the calorimeter (calculation based on tracker information)
3. Subtract the expected energy cell-by-cell from the matched topo-cluster until the expected energy is reached
4. Clean the remnants if it’s fluctuation

Xuanhong Lou | A key variable: Missing Transverse Momentum - reconstruction, pile-up and its significance | 22 May 2019 | Page 14
Towards higher precision

Particle Flow (PFlow) reconstruction

Performance of PFlow jet

- Better energy resolution at low p_T region due to track matching
- Fake jet ratio significantly lowered at central region - *forward region outside of tracker acceptance*
- PU energy removed from the topo-cluster if matched with a PU track - *effective PU suppression*

Performance of PFlow MET

- Better resolution of MET due to track matching
- Great PU mitigation at central region - *no JVT available for EMTopo jets with $p_T > 60$ GeV*
- MET tail mainly due to muon mis-measurement and mis-identified jets

ATLAS Preliminary

$\sqrt{s} = 13$ TeV

2.4 fb$^{-1}$, zero-bias data

Anti-k_T, $R = 0.4$

$|\eta_{	ext{def}}| < 0.7$, $\langle \mu \rangle = 37.8$

ATLAS Simulation Preliminary

$\sqrt{s} = 13$ TeV

36 fb$^{-1}$

$Z \rightarrow \mu\mu$, 0 jets with $|\eta| > 2.4$

ATLAS-CONF-2018-023

JETM-2019-01

JETM-2017-006
Towards higher precision

Forward Jet Vertex Tagger

1. For each vertex \(i \), compute \(p_T^{\text{miss}, i} \) with QCD pile-up tracks;

2. Check if there is a forward jet balancing the \(p_T^{\text{miss}, i} \);

3. If so, remove this forward jet.

A candidate \(Z \rightarrow \mu\mu \) event containing two QCD pile-up jets

Red: tracks from the primary vertex

Yellow: tracks from the muons

Green: tracks from the pile-up vertex with highest \(\Sigma p_T^2 \)

Towards higher precision

Different MET working points

- MET working points based on different forward jet selections
 - Loose working point
 retaining hard-scatter jets in the forward region, good resolution at low PU
 - Tight working point
 much better resolution at high PU wrt. loose working point, worse at low PU
 - fJVT working point
 improved resolution at high PU wrt. loose working point
 optimal for analyses where hard-scatter forward jets are expected, e.g. VBF process

| Working Point | Central jets ($|\eta| < 2.5$) | Forward jets ($|\eta| > 2.5$) |
|---------------|-----------------------------|-----------------------------|
| Loose | $p_T > 20$ GeV | $p_T > 20$ GeV |
| | pass JVT when $p_T < 60$ GeV| |
| Tight | $p_T > 20$ GeV | $p_T > 30$ GeV |
| | pass JVT when $p_T < 60$ GeV| |
| fJVT | $p_T > 20$ GeV | $p_T > 20$ GeV |
| | pass JVT when $p_T < 60$ GeV| pass fJVT when $p_T < 50$ GeV|
MET significance

Event-based and object-based MET significance

Event-based MET significance
- Event-based quantity, neglecting the physics nature of different objects
- Only consider the scale of p_T, no angular correlation taken into account

$$S = \frac{E_T^{miss}}{\sqrt{\sum E_T}}$$

Object-based MET significance
- Based on the expected resolutions for all objects entering MET computation
- Momentum resolution on p_T scale and direction, PU mitigation and soft term

$$S = \frac{|E_T^{miss}|}{\sqrt{\sigma^2_L (1 - \rho^2_{LT})}}$$
Performance of MET significance dependent on event topology

- \(ZZ \rightarrow ee\nu\nu \) vs. \(Z \rightarrow ee \), pre-selected with \(|m_Z - m_{ee}| < 15 \text{ GeV} \)

ATLAS

Simulation Preliminary

\(\sqrt{s} = 13 \text{ TeV}, 36 \text{ fb}^{-1} \)

ee-channel

\(|m_Z - m_{ee}| < 15 \text{ GeV} \)

\(E_T^{\text{miss}} > 50 \text{ GeV} \)
Application of object-based MET significance in SUSY: sbottom multi-b

- Search for bottom-squark pair production in final states containing Higgs bosons, b-jets and missing transverse momentum
 - Multiple b-jets + no lepton + MET (from neutralinos)
 - Three kinematic topologies - SRA, SRB and SRC

Discriminating variable:
- Effective mass
- Object-based MET significance

High mass splitting between \tilde{b}_0 and $\tilde{\chi}_2^0$
- All b-jets have relatively high p_T, Higgs tagging possible

Small mass splitting between \tilde{b}_0 and $\tilde{\chi}_2^0$, $\Delta m(\tilde{\chi}_2^0, \tilde{\chi}_1^0) = 130$ GeV
- Very soft b-jets from \tilde{b}_0 decay, Higgs tagging possible

Small mass splitting between \tilde{b}_0 and $\tilde{\chi}_2^0$, $m(\tilde{\chi}_1^0) = 60$ GeV
- Soft b-jets from \tilde{b}_0 and Higgs, lower b-jet multiplicity required in the final state
Application of object-based MET significance in SUSY: sbottom multi-b

4 non-overlapping subsets of SRC binned in object-based MET sig.
Major bkg constrained in a bkg-only fit in CRs
Exclusion limit: \(\sim 1.4 \text{ TeV} \) sbottom mass