Multistep Single-Field Strong Phase Transitions from New TeV Scale Fermions

Andrei Angelescu
Dept. of Physics and Astronomy, University of Nebraska-Lincoln

SUSY 2019

May 21st, 2019
Baryon Asymmetry in the Universe (BAU)?
→ Sakharov conditions:
 - B-number violation;
 - C and CP violation;
 - interactions out of thermal equilibrium;

Interactions out of thermal equilibrium?
→ Strongly First Order (SFO) Electroweak Phase Transition (EWPT)!

Solution within the Standard Model (SM)?
→ No strong EWPT! (plus not enough CP) ⇒ new physics needed!

Usually, new bosons → $O(100)$ papers . . .

What about new fermions and phase transitions?

Extra Dimensions, Composite Higgs, . . . ⇒ new fermions!

Rather uncharted territory (but: Carena+ '04, Fok+ '08, Davoudiasl+ '12, Fairbairn+ '13, Egana-Ugrinovic '17).
Contents

1 Introduction and Motivation

2 New Dirac Fermions and the Phase Structure of the Universe

3 Gravitational Wave (and Collider) Signatures

4 Summary and Conclusions
Overview

1 Introduction and Motivation

2 New Dirac Fermions and the Phase Structure of the Universe

3 Gravitational Wave (and Collider) Signatures

4 Summary and Conclusions
A Minimal Vector-Like Lepton (VLL) Model

- Dirac fermion model for strong PTs in the Early Universe?
 → need strong couplings to the Higgs!
- However: strong Yukawas ⇒ large custodial symmetry breaking!
- Solution → a minimal model which can possess (approximate) custodial symmetry:
 \[L_{L,R} = \left(\begin{array}{c} N \\ E \end{array} \right)_{L,R} \sim (1, 2, -1/2), \quad N'_{L,R} \sim (1, 1, 0), \quad E'_{L,R} \sim (1, 1, -1). \]

- VLL masses + Yukawa couplings (assume negligible mixing with the SM):
 \[-\mathcal{L}_{VLL} = y_{N_R} \bar{L}_L \hat{H} N'_R + y_{N_L} \bar{N}'_L \hat{H} L_R + y_{E_R} \bar{L}_L H E'_R + y_{E_L} \bar{E}'_L H^\dagger L_R \\
 + m_L \bar{L}_L L_R + m_N \bar{N}'_L N'_R + m_E \bar{E}'_L E'_R + \text{h.c.}. \]

- EW symmetry breaking ⇒ mass matrices \((\nu = 246 \text{ GeV, } v_h = \nu/\sqrt{2} \simeq 174 \text{ GeV}):\n \mathcal{M}_N = \begin{pmatrix} m_L & \nu y_{N_R} \\ \nu y_{N_L} & m_N \end{pmatrix}, \quad \mathcal{M}_E = \begin{pmatrix} m_L & \nu y_{E_R} \\ \nu y_{E_L} & m_E \end{pmatrix}. \]

- Diagonalization ⇒ eigenmasses \(m_{N_1} < m_{N_2}, m_{E_1} < m_{E_2}\) and interaction basis couplings.
Model and Approach

Approach

- Calculate the 1–loop finite T effective potential (on-shell renormalization scheme, $V(0, T) \equiv 0$):

$$V(\phi, T) = V_{\text{tree}}^{\text{SM}}(\phi) + V_{1-\text{loop}}^{\text{SM}}(\phi, T) + V_{\text{VLL}}^{1-\text{loop}}(\phi, T) + V_{\text{Daisy}}(\phi, T);$$

- Many parameters \Rightarrow scan approach:

$$m_L, m_N, m_E \in [500, 1500] \text{ GeV},$$

$$y_{N_{L,R}}, y_{E_{L,R}} \in \left[2, \sqrt{4\pi}\right];$$

- Impose $0.71 \leq \mu_{\gamma\gamma} < 1.29$ (1802.04146), $\Delta \chi^2(S, T) \leq 6.18$;

- Calculate PT strength for each point $\longrightarrow \xi \equiv \phi_c / T_c$.
Thermal Evolution of the Effective Potential: Multistep Phase Transition

Figure: Typical temperature dependence of the 1–loop effective potential in the VLL model under study.

N.B.: Only the last SFOPT is responsible for generating the BAU! \(\Rightarrow \xi_1 \geq 1.3. \)
Correlations Between Observables

- Left top: \(\mu_{\gamma\gamma} \) vs. \(\xi_1 \)
- Right top: \(\xi_2 \) vs. \(\xi_1 \)
- Left bottom: \(m_{\phi_1} \) vs. \(\xi_1 \)
- Right bottom: \(m_{\phi_1} \) vs. \(\xi_1 \)
Overview

1. Introduction and Motivation

2. New Dirac Fermions and the Phase Structure of the Universe

3. Gravitational Wave (and Collider) Signatures

4. Summary and Conclusions
Gravitational Wave Signature

- **Strong PTs in the Early Universe** ⇒ **Gravitational Wave (GW) stochastic background!**
 → **Detectable** by future GW experiments, such as LISA/DECIGO/BBO?

- **GW amplitude and spectrum** controlled (mostly) by two parameters:
 \[\alpha = \frac{\text{latent heat}}{\text{radiation energy}}, \quad \frac{\beta}{H_{\text{PT}}} = \text{"inverse PT duration"} \]

- **Main GW sources** → bubble collisions (\(\Omega_{\text{col}}\)), MHD turbulence (\(\Omega_{\text{turb}}\)), sound waves (\(\Omega_{\text{sw}}\)):
 \[h^2 \Omega_{\{\text{col, turb, sw}\}}(f) \propto \left(\frac{\beta}{H_{\text{PT}}} \right)^{-\{2,1,1\}} \left(\frac{\alpha}{1 + \alpha} \right)^{\{2, \frac{3}{2}, 2\}} S_{\{\text{col, turb, sw}\}}(f; \beta/H_{\text{PT}}) \]

- Typically, for our **VLL** model:
 \[\alpha = \mathcal{O}(10^{-1} - 10^{-2}), \quad \frac{\beta}{H_{\text{PT}}} = \mathcal{O}(10^3 - 10^4), \]

 ⇒ **SW contribution dominant** for \(f \in [10^{-3}, 1] \text{ Hz} \) (LISA/DECIGO/BBO max sensitivity).
GW Spectrum Calculation and Detection Prospects

- Compute the bounce action $S_3(T)$, find the temperature at which the PT occurs:
 $$\frac{S_3(T_{PT})}{T_{PT}} \approx 142;$$

- Calculate α and β for the two SFOPTs:
 $$\alpha = \frac{|V(\phi_{broken}, T_{PT})| + T_{PT} \left| \frac{\partial V(\phi_{broken}, T)}{\partial T} \right|}{\rho_{\text{rad}}(T_{PT})}, \quad \frac{\beta}{H_{PT}} = T_{PT} \frac{d}{dT} \left(\frac{S_3}{T} \right) \bigg|_{T_{PT}}.$$

- Compute GW spectrum \rightarrow GW detectable by DECIGO/BBO:
Collider Predictions

Benchmark point \rightarrow strongest PT:

$$y_{NL} \simeq 3.4, \ y_{NR} \simeq 3.49, \ y_{EL} \simeq 3.34, \ y_{ER} \simeq 3.46,$$
$$m_L \simeq 1.06 \text{ TeV}, \ m_N \simeq 0.94 \text{ TeV}, \ m_E \simeq 1.34 \text{ TeV}.$$

- N_1 not a suitable Dark Matter candidate \Rightarrow SM-VLL mixing should be present!
- Measurements: $W_{\tau\nu}$ and $Z_{\tau\tau}$ couplings \Rightarrow take $y_{\tau E} \simeq 0.05$;
- For simplicity, $y_{\nu N} \simeq 0$ \Rightarrow $\text{BR}(N_1 \rightarrow W\tau) = 1$;
- Predictions for the benchmark \rightarrow $m_{N_1} \simeq 400 \text{ GeV}, \ m_{E_1} \simeq 600 \text{ GeV}$, and:

$$\text{BR}(E_1 \rightarrow N_1 W) \simeq 1, \ \sigma(pp \rightarrow \psi_{NP}\psi_{NP}) \simeq 0.3 \text{ fb}, \ \sigma(pp \rightarrow \psi_{NP}\psi_{SM}) \simeq \mathcal{O}(10^{-4}) \text{ fb}$$

Direct production of VLLs suppressed . . .
More promising search avenue? \rightarrow $\mu\gamma\gamma$!
Overview

1 Introduction and Motivation

2 New Dirac Fermions and the Phase Structure of the Universe

3 Gravitational Wave (and Collider) Signatures

4 Summary and Conclusions
Summary and Conclusions

- Studied the impact of new VLLs on the phase structure of the Universe;
 → Indeed, TeV-scale VLLs with strong Yukawas can induce SFOEWPTs!

- Interestingly, such a simple model predicts a complex PT structure:
 → First example of single-field multistep SFOPT!

- GW signature → multiple peaks, possibly detectable by DECIGO or BBO;

- Collider searches → direct production and detection of VLLs not promising;

- $\mu\gamma\gamma = \text{most promising collider signature} \rightarrow 5\% \text{ precision @ HL-LHC!}$
 (CMS 1307.7135, ATLAS 1307.7292)

⇒ HL-LHC can fully test our model for VLL-induced SFOEWPTs!

Thank you for your attention!
Summary and Conclusions

- Studied the impact of new VLLs on the phase structure of the Universe;
 - Indeed, TeV-scale VLLs with strong Yukawas can induce SFOEWPTs!

- Interestingly, such a simple model predicts a complex PT structure:
 - First example of single-field multistep SFOPT!

- GW signature → multiple peaks, possibly detectable by DECIGO or BBO;

- Collider searches → direct production and detection of VLLs not promising;

- $\mu\gamma\gamma = \text{most promising collider signature} \rightarrow 5\% \text{ precision @ HL-LHC!}$
 (CMS 1307.7135, ATLAS 1307.7292)

 ⇒ HL-LHC can fully test our model for VLL-induced SFOEWPTs!

Thank you for your attention!
Other Correlations
Choice of Bubble Wall Velocity

Figure: Ratio of bulk kinetic energy over to vacuum energy κ (efficiency factor) as a function of the bubble wall velocity, ξ_w, for various values of $\alpha_N \equiv \alpha$ (result from 1004.4187).

Our choice: $\xi_w = 0.6 \Rightarrow \kappa \simeq 0.4$ (for typical values of $\alpha \simeq 10^{-1}$).
GW Spectrum Formulae

\[h^2 \Omega_{\text{col}}(f) = 1.67 \times 10^{-5} \left(\frac{0.11 \xi^3_{s_{w}}}{0.42 + \xi^2_{s_{w}}} \right) \left(\frac{\beta}{H_{\text{PT}}} \right)^{-2} \left(\frac{\kappa_{\text{col}} \alpha}{1 + \alpha} \right)^2 \left(\frac{g_{\text{eff}}}{100} \right)^{-1/3} \frac{3.8 (f/f_{\text{col}})^{2.8}}{1 + 2.8 (f/f_{\text{col}})^{3.8}}, \]

\[h^2 \Omega_{\text{turb}}(f) = 3.35 \times 10^{-4} \xi_{w} \left(\frac{\beta}{H_{\text{PT}}} \right)^{-1} \left(\frac{\kappa_{\text{turb}} \alpha}{1 + \alpha} \right)^{3/2} \left(\frac{g_{\text{eff}}}{100} \right)^{-1/3} \left(\frac{f/f_{\text{turb}}}{1 + f/f_{\text{turb}}} \right)^{11/3} (1 + 8\pi f/h_{*}), \]

\[h^2 \Omega_{\text{sw}}(f) = 2.62 \times 10^{-6} \xi_{w} \left(\frac{\beta}{H_{\text{PT}}} \right)^{-1} \left(\frac{\kappa \alpha}{1 + \alpha} \right)^2 \left(\frac{g_{\text{eff}}}{100} \right)^{-1/3} \frac{7^{3.5} (f/f_{\text{sw}})^{3}}{4 + 3 (f/f_{\text{sw}})^{2}}^{3.5}. \]

\[\kappa = 0.4, \ \epsilon = 0.05 \ \Rightarrow \ \kappa_{\text{turb}} = \epsilon \kappa = 0.02. \]

\[f_{\text{col}} = (1.65 \times 10^{-5} \ \text{Hz}) \left(\frac{0.62}{1.8 - 0.1 \xi_{w} + \xi^2_{s_{w}}} \right) \left(\frac{\beta}{H_{\text{PT}}} \right) \left(\frac{T_{\text{PT}}}{100 \ \text{GeV}} \right) \left(\frac{g_{\text{eff}}}{100} \right)^{1/6}, \]

\[f_{\text{turb}} = (2.7 \times 10^{-5} \ \text{Hz}) \left(\frac{1}{\xi_{w}} \right) \left(\frac{\beta}{H_{\text{PT}}} \right) \left(\frac{T_{\text{PT}}}{100 \ \text{GeV}} \right) \left(\frac{g_{\text{eff}}}{100} \right)^{1/6}, \]

\[h_{*} = (1.65 \times 10^{-5} \ \text{Hz}) \left(\frac{T_{\text{PT}}}{100 \ \text{GeV}} \right) \left(\frac{g_{\text{eff}}}{100} \right)^{1/6}, \]

\[f_{\text{sw}} = (1.9 \times 10^{-5} \ \text{Hz}) \left(\frac{1}{\xi_{w}} \right) \left(\frac{\beta}{H_{\text{PT}}} \right) \left(\frac{T_{\text{PT}}}{100 \ \text{GeV}} \right) \left(\frac{g_{\text{eff}}}{100} \right)^{1/6}. \]
Typical values for our case:

\[\alpha = 0.1, \quad \frac{\beta}{H_{PT}} = 2000, \quad T_{PT} = 100 \text{ GeV}, \quad g_{\text{eff}} = 100; \]