Multistep Single-Field Strong Phase Transitions from New TeV Scale Fermions

Andrei Angelescu Dept. of Physics and Astronomy, University of Nebraska-Lincoln

Based on Phys. Rev. D 99 (2019) no.5, 055023 [arXiv:1812.08293 [hep-ph]], in collaboration with P. Huang

SUSY 2019

May 21st, 2019

[Introduction](#page-1-0)

Introduction and Motivation

- Baryon Asymmetry in the Universe (BAU)?
	- \rightarrow Sakharov conditions:
		- B-number violation;
		- C and CP violation:
		- interactions out of thermal equilibrium;
- Interactions out of thermal equilibrium? \rightarrow Strongly First Order (SFO) Electroweak Phase Transition (EWPT)!
- Solution within the Standard Model (SM)?
	- \rightarrow No strong EWPT! (plus not enough \mathcal{C}/P) \Rightarrow new physics needed!
- Usually, new bosons \rightarrow $\mathcal{O}(100)$ papers ...

WHAT ABOUT NEW FERMIONS AND PHASE TRANSITIONS?

Extra Dimensions, Composite Higgs, $\ldots \Rightarrow$ new fermions!

Rather uncharted territory (but: Carena+ '04, Fok+ '08, Davoudiasl+ '12, Fairbairn+ '13, Egana-Ugrinovic '17).

Contents

1 [Introduction and Motivation](#page-1-0)

² [New Dirac Fermions and the Phase Structure of the Universe](#page-3-0)

³ [Gravitational Wave \(and Collider\) Signatures](#page-8-0)

⁴ [Summary and Conclusions](#page-12-0)

Overview

1 [Introduction and Motivation](#page-1-0)

² [New Dirac Fermions and the Phase Structure of the Universe](#page-3-0)

³ [Gravitational Wave \(and Collider\) Signatures](#page-8-0)

⁴ [Summary and Conclusions](#page-12-0)

A Minimal Vector-Like Lepton (VLL) Model

- Dirac fermion model for strong PTs in the Early Universe? \rightarrow need strong couplings to the Higgs!
- However: strong Yukawas ⇒ large custodial symmetry breaking!
- \bullet Solution \rightarrow a minimal model which can posses (approximate) custodial symmetry:

$$
L_{L,R} = \binom{N}{E}_{L,R} \sim (1, 2, -1/2), \quad N'_{L,R} \sim (1, 1, 0), \quad E'_{L,R} \sim (1, 1, -1).
$$

 \bullet VLL masses $+$ Yukawa couplings (assume negligible mixing with the SM):

$$
-\mathcal{L}_{VLL} = y_{N_R} \overline{L}_L \tilde{H} N_R' + y_{N_L} \overline{N}_L' \tilde{H}^\dagger L_R + y_{E_R} \overline{L}_L H E_R' + y_{E_L} \overline{E}_L' H^\dagger L_R + m_L \overline{L}_L L_R + m_N \overline{N}_L' N_R' + m_E \overline{E}_L' E_R' + \text{h.c.}.
$$

EW symmetry breaking \Rightarrow mass matrices ($v = 246$ GeV, $v_h = v / \sqrt{2} \simeq 174$ GeV):

$$
\mathcal{M}_N = \begin{pmatrix} m_L & v_h y_{N_L} \\ v_h y_{N_R} & m_N \end{pmatrix}, \quad \mathcal{M}_E = \begin{pmatrix} m_L & v_h y_{E_L} \\ v_h y_{E_R} & m_E \end{pmatrix}.
$$

Diagonalization \Rightarrow eigenmasses $m_{N_1} < m_{N_2}, m_{E_1} < m_{E_2}$ and interaction basis couplings.

Approach

• Calculate the 1 -loop finite T effective potential (on-shell renormalization scheme, $V(0, T) \equiv 0$:

$$
V(\phi, T) = V_{\text{tree}}^{\text{SM}}(\phi) + V_{1-\text{loop}}^{\text{SM}}(\phi, T) + V_{1-\text{loop}}^{\text{UL}}(\phi, T) + V_{\text{Daisy}}(\phi, T);
$$

Many parameters ⇒ scan approach:

$$
m_L, m_N, m_E \in [500, 1500] \text{ GeV},
$$

$$
y_{N_{L,R}}, y_{E_{L,R}} \in [2, \sqrt{4\pi}];
$$

• Calculate PT strength for each point $\rightarrow \xi \equiv \phi_c/T_c$.

Thermal Evolution of the Effective Potential: Multistep Phase Transition

Figure: Typical temperature dependence of the 1–loop effective potential in the VLL model under study.

N.B.: Only the last SFOPT is responsible for generating the BAU! $\Rightarrow \xi_1 > 1.3$.

Correlations Between Observables

Overview

[Introduction and Motivation](#page-1-0)

² [New Dirac Fermions and the Phase Structure of the Universe](#page-3-0)

³ [Gravitational Wave \(and Collider\) Signatures](#page-8-0)

⁴ [Summary and Conclusions](#page-12-0)

[Analysis](#page-9-0)

Gravitational Wave Signature

- \bullet Strong PTs in the Early Universe \Rightarrow Gravitational Wave (GW) stochastic background! \rightarrow Detectable by future GW experiments, such as LISA/DECIGO/BBO?
- GW amplitude and spectrum controlled (mostly) by two parameters:

 $\alpha = \frac{\text{latent heat}}{\text{11}}$ $\frac{\text{latent heat}}{\text{radiation energy}}, \frac{\beta}{H_P}$ $\frac{\beta}{H_{\text{PT}}}$ = "inverse PT duration"
Hubble rate Hubble rate

• Main GW sources \rightarrow bubble collisions (Ω_{col}) , MHD turbulence (Ω_{turb}) , sound waves (Ω_{sw}) :

$$
h^2 \Omega_{\{\text{col, turb,sw}\}}(f) \propto \left(\frac{\beta}{H_{\text{PT}}}\right)^{-\{2,1,1\}} \left(\frac{\alpha}{1+\alpha}\right)^{\{2,\frac{3}{2},2\}} S_{\{\text{col, turb,sw}\}}(f;\beta/H_{\text{PT}})
$$

Typically, for our VLL model:

$$
\alpha = \mathcal{O}(10^{-1} - 10^{-2}), \quad \frac{\beta}{H_{\rm PT}} = \mathcal{O}(10^3 - 10^4),
$$

⇒ SW contribution dominant for $f \in [10^{-3},1]$ Hz (LISA/DECIGO/BBO max sensitivity).

[Analysis](#page-10-0)

GW Spectrum Calculation and Detection Prospects

• Compute the bounce action $S_3(T)$, find the temperature at which the PT occurs:

$$
\frac{S_3(\mathcal{T}_{\rm PT})}{\mathcal{T}_{\rm PT}}\simeq 142;
$$

• Calculate α and β for the two SFOPTs:

$$
\alpha = \frac{|V(\phi_{\text{broken}}, T_{\text{PT}})| + T_{\text{PT}} \left| \frac{\partial V(\phi_{\text{broken}}, T)}{\partial T} \right|_{T_{\text{PT}}}}{ \rho_{\text{rad}}(T_{\text{PT}})}, \quad \frac{\beta}{H_{\text{PT}}} = T_{\text{PT}} \frac{d}{d\tau} \left(\frac{S_3}{\tau} \right) \Big|_{T_{\text{PT}}}.
$$

• Compute GW spectrum \rightarrow GW detectable by DECIGO/BBO:

[Analysis](#page-11-0)

Collider Predictions

Benchmark point \rightarrow strongest PT:

$$
y_{N_L} \simeq 3.4
$$
, $y_{N_R} \simeq 3.49$, $y_{E_L} \simeq 3.34$, $y_{E_R} \simeq 3.46$,
 $m_L \simeq 1.06$ TeV, $m_N \simeq 0.94$ TeV, $m_E \simeq 1.34$ TeV.

- \bullet N₁ not a suitable Dark Matter candidate \Rightarrow SM-VLL mixing should be present!
- Measurements: $W \tau \nu$ and $Z \tau \tau$ couplings \Rightarrow take $y_{\tau} \approx 0.05$;
- For simplicity, $y_{\nu N} \simeq 0 \Rightarrow BR(N_1 \rightarrow W \tau) = 1$;
- Predictions for the benchmark $\rightarrow m_{N_1} \simeq 400$ GeV, $m_{E_1} \simeq 600$ GeV, and:

 $\text{BR}(\mathcal{E}_1 \to \mathcal{N}_1 \mathcal{W}) \simeq 1, \quad \sigma(p p \to \psi_{\rm NP} \psi_{\rm NP}) \simeq 0.3 \text{ fb}, \quad \sigma(p p \to \psi_{\rm NP} \psi_{\rm SM}) \simeq \mathcal{O}(10^{-4}) \text{ fb}$

DIRECT PRODUCTION OF VLLS SUPPRESSED ... MORE PROMISING SEARCH AVENUE? \longrightarrow $\mu_{\gamma\gamma}$!

Overview

1 [Introduction and Motivation](#page-1-0)

² [New Dirac Fermions and the Phase Structure of the Universe](#page-3-0)

³ [Gravitational Wave \(and Collider\) Signatures](#page-8-0)

Summary and Conclusions

- Studied the impact of new VLLs on the phase structure of the Universe;
	- \rightarrow Indeed, TeV-scale VLLs with strong Yukawas can induce SFOEWPTs!
- Interestingly, such a simple model predicts a complex PT structure:
	- \rightarrow First example of single-field multistep SFOPT!
- \bullet GW signature \rightarrow multiple peaks, possibly detectable by DECIGO or BBO;
- Collider searches \rightarrow direct production and detection of VLLs not promising:
- ϕ $\mu_{\gamma\gamma}$ = most promising collider signature \rightarrow 5% precision @ HL-LHC! (CMS 1307.7135, ATLAS 1307.7292)
	- ⇒ HL-LHC can fully test our model for VLL-induced SFOEWPTs!

THANK YOU FOR YOUR ATTENTION!

Summary and Conclusions

- Studied the impact of new VLLs on the phase structure of the Universe;
	- \rightarrow Indeed, TeV-scale VLLs with strong Yukawas can induce SFOEWPTs!
- Interestingly, such a simple model predicts a complex PT structure:
	- \rightarrow First example of single-field multistep SFOPT!
- \bullet GW signature \rightarrow multiple peaks, possibly detectable by DECIGO or BBO;
- Collider searches \rightarrow direct production and detection of VLLs not promising:
- ϕ $\mu_{\gamma\gamma}$ = most promising collider signature \rightarrow 5% precision @ HL-LHC! (CMS 1307.7135, ATLAS 1307.7292)
	- ⇒ HL-LHC can fully test our model for VLL-induced SFOEWPTs!

THANK YOU FOR YOUR ATTENTION!

Other Correlations

Choice of Bubble Wall Velocity

Figure: Ratio of bulk kinetic energy over to vacuum energy κ (efficiency factor) as a function of the bubble wall velocity, ξ_w , for various values of $\alpha_N \equiv \alpha$ (result from 1004.4187).

Our choice: $\xi_w = 0.6 \Rightarrow \kappa \simeq 0.4$ (for typical values of $\alpha \simeq 10^{-1}$).

A. Angelescu [Multistep SFOPTs from New Fermions](#page-0-0) May 21st, 2019 13 / 13

GW Spectrum Formulae

$$
h^{2}\Omega_{\text{col}}(f) = 1.67 \times 10^{-5} \left(\frac{0.11\xi_{w}^{3}}{0.42 + \xi_{w}^{2}} \right) \left(\frac{\beta}{H_{\text{PT}}} \right)^{-2} \left(\frac{\kappa_{\text{col}}\alpha}{1+\alpha} \right)^{2} \left(\frac{g_{\text{eff}}}{100} \right)^{-1/3} \frac{3.8 \left(f/f_{\text{col}} \right)^{2.8}}{1 + 2.8 \left(f/f_{\text{col}} \right)^{3.8}},
$$

\n
$$
h^{2}\Omega_{\text{turb}}(f) = 3.35 \times 10^{-4} \xi_{w} \left(\frac{\beta}{H_{\text{PT}}} \right)^{-1} \left(\frac{\kappa_{\text{turb}}\alpha}{1+\alpha} \right)^{3/2} \left(\frac{g_{\text{eff}}}{100} \right)^{-1/3} \frac{\left(f/f_{\text{turb}} \right)^{3}}{\left(1 + f/f_{\text{turb}} \right)^{11/3} \left(1 + 8\pi f/h_{*} \right)},
$$

\n
$$
h^{2}\Omega_{\text{sw}}(f) = 2.62 \times 10^{-6} \xi_{w} \left(\frac{\beta}{H_{\text{PT}}} \right)^{-1} \left(\frac{\kappa\alpha}{1+\alpha} \right)^{2} \left(\frac{g_{\text{eff}}}{100} \right)^{-1/3} \frac{7^{3.5} \left(f/f_{\text{sw}} \right)^{3}}{\left(4 + 3 \left(f/f_{\text{sw}} \right)^{2} \right)^{3.5}}.
$$

$$
\kappa = 0.4, \ \epsilon = 0.05 \ \Rightarrow \ \kappa_{\rm turb} = \epsilon \,\kappa = 0.02.
$$

$$
\begin{aligned} f_{\rm col} &= \left(1.65\times10^{-5}\,\mathrm{Hz}\right) \left(\frac{0.62}{1.8-0.1\xi_{\rm w}+\xi_{\rm w}^2}\right) \left(\frac{\beta}{H_{\rm PT}}\right) \left(\frac{T_{\rm PT}}{100\,\mathrm{GeV}}\right) \left(\frac{g_{\rm eff}}{100}\right)^{1/6}, \\ f_{\rm turb} &= \left(2.7\times10^{-5}\,\mathrm{Hz}\right) \left(\frac{1}{\xi_{\rm w}}\right) \left(\frac{\beta}{H_{\rm PT}}\right) \left(\frac{T_{\rm PT}}{100\,\mathrm{GeV}}\right) \left(\frac{g_{\rm eff}}{100}\right)^{1/6}, \\ h_* &= \left(1.65\times10^{-5}\,\mathrm{Hz}\right) \left(\frac{T_{\rm PT}}{100\,\mathrm{GeV}}\right) \left(\frac{g_{\rm eff}}{100}\right)^{1/6}, \\ f_{\rm sw} &= \left(1.9\times10^{-5}\,\mathrm{Hz}\right) \left(\frac{1}{\xi_{\rm w}}\right) \left(\frac{\beta}{H_{\rm PT}}\right) \left(\frac{T_{\rm PT}}{100\,\mathrm{GeV}}\right) \left(\frac{g_{\rm eff}}{100}\right)^{1/6}. \end{aligned}
$$

Contribution of Various GW Sources

Typical values for our case:

$$
\alpha = 0.1, \ \frac{\beta}{H_{\rm PT}} = 2000, \ T_{\rm PT} = 100 \; {\rm GeV}, \; g_{\rm eff} = 100;
$$

