SUSY 2019, Texas A&M, Corpus Christi, May 20-24, 2019

# String Models

# [Landscape of three-family supersymmetric Standard Models in F-theory]

# Mirjam Cvetič



Univerza *v Ljubljani* Fakulteta za *matematiko in fiziko* 





# **Outline**

- I. String Theory compactification:
  Heterotic and String theory w/ D-branes
- II. F-theory: key ingredients
  gauge symmetries, matter & Yukawa couplings
  [Recent development: global constraints on gauge symmetry
  → implications for F-theory ``swampland'']

  No time
- III.Particle physics model building in F-theory:
  Building blocks; First globally consistent
  three-family supersymmetirc Standard Models
- IV. Landscape of three family SUSY Standard Models:

  Scan of globally consistent models

  Highlight
- V. Summary/Outlook: work in progress & open issues
  Apologies, Upenn-centric

# I. String Theory compactification

w/ D-branes

#### Perturbative String Theories -> consistent theory of quantum gravity

Green, Schwarz'84

#### Phenomenologically most promising

```
SM x U(1)_{B-L} w/ two Higgs doublets: He, Ovrut, Pantev '04...
```

MSSM (w/one Higgs doublets): Bouchard, M.C., Donagi '05

Type IIA superstring

Orbifold constructions: Lebedev, Nilles, Raby, Ramos, Ratz, Vaudrevange, Wingerter '07-'10

(closed)

Landscape analysis (Complete intersection Calabi-Yau's): Anderson, Gray, Lukas `09-'18...

(10<sup>10</sup> solutions w/ 3-family SM's; phenomenological issues)

Heterotic E<sub>8</sub>xE<sub>8</sub> string

Type IIB superstring (closed)

Heterotic SO(32) string

Type I superstring (open)



Different String theories related to each other by weak-strong coupling duality

# String Theory with D(irichlet)-branes

boundaries of open strings with charges at their ends



Polchinski'96

D-branes → field theory of charged excitations

# String Compactification with D-branes



In compact space D-branes wrap different cycles (divisors) which intersect (gauge boson) (matter)

Implications for particle physics (charged excitations)

> intersecting D - brane solutions of particle physics

# Standard Models with intersecting D-branes

Aldazabal, Franco, Ibanez, Rabadan, Uranga 0011132; Blumenagen, Kors, Lust 0012156...

## First three-family supersymmetric Standard Model

M.C., Shiu, Uranga 0107166; 0107143 ...

Status review: Blumenhagen, M.C., Langacker, Shiu 0502005

Ann. Rev. Nucl. & Particle Sci., 55, 71 (2005)

#### Extensive follow-up: O(100) realistic Standard Models

M.C., Richter, Halverson `09-`10...

M.C., Halverson, Langacker '11,'12...,'16

→ typically w/ chiral & non-chiral exotics

#### [Further developments: D-instantons → neutrino masses]

M.C.,Blumenhagen, Weigand 0609191; Ibanez & Uranga 0609213...

No time

Upshot: landscape analysis limited – on orbifolds, only (due limitations of conformal field theory techniques)

# Dual D-brane interpretation:

extended massive sources, curve space-time ("back-reacted" objects at finite - large string coupling g<sub>s</sub>)



→ Implication for particle physics at finite g<sub>s</sub>

# D-branes as gravitational object



In compact space D-branes, wrapping divisors ``back-react"  $\rightarrow$  cause highly curved - singular space along divisors ( $g_s \rightarrow \infty$ )

Calabi-Yau space with backreacted D-branes:

new six dimensional space B

F-theory

# II. F-theory basic ingredients

Type IIB string perspective

# F-theory compactification

[Vafa'96], [Morrison, Vafa'96],... c.f., review [Weigand 1806.01854]

Singular torus fibered Calabi-Yau manifold X (N=1 supersymmetry)

To B add torus:

Modular parameter of torus
(elliptic curve)

$$\tau \equiv C_0 + ig_s^{-1}$$

(SL(2,Z) of Type IIB string)



#### Weierstrass normal form for torus (elliptic) fibration of X

$$y^2 = x^3 + fxz^4 + gz^6$$

[z:x:y] - homogeneous coordinates on  ${\bf P^2}(1,2,3)$   $(x,y,z)\simeq (\lambda^2 x,\lambda^3 y,\lambda z)$  weighted projective space

f, g – sections on (holomorphic functions of) B

# F-theory compactification

Singular torus fibered Calabi-Yau manifold X

Modular parameter of two-torus (elliptic curve)

$$\tau \equiv C_0 + ig_s^{-1}$$



Weierstrass normal form for elliptic fibration of X

$$y^2 = x^3 + fxz^4 + gz^6$$

Matter (co-dim 2; chirality- G<sub>4</sub>-flux)

Yukawa couplings (co-dim 3)

divisor- singular elliptic-fibration, g<sub>s</sub>→∞ location of (p,q) 7-branes

non-Abelian gauge symmetry (co-dim 1) – ADE singularities

# III. Particle physics in F-theory

Globally consistent models

### Initial focus: F-theory with SU(5) grand unification

[10 10 5 coupling,...] [Donagi, Wijnholt'08] [Beasley, Heckman, Vafa'08]...

#### **Model Constructions:**

Loca [Donagi, Wijnholt'09-10]...[Marsano, Schäfer-Nameki, Saulina'09-11]... Review: [Heckman]

#### Global

[Blumehagen, Grimm, Jurke, Weigand'09] [M.C., Garcia-Etxebarria, Halverson'10]... [Marsano, Schäfer-Nameki'11-12]... [Clemens, Marsano, Pantev, Raby, Tseng'12]... Also SO(10)... [Buchmüller, Dierigl, Oehlmann, Rühle'17]

### Other particle physics models:

Standard Model building blocks (via toric techniques) [Lin, Weigand'14] SM x U(1) [1604.04292]

First global 3-family Standard, Pati-Salam, Trinification models

[M.C., Klevers, Peña, Oehlmann, Reuter, 1503.02068]

Global 3-family Standard Model with Z<sub>2</sub> matter parity

[M.C., Lin, Liu, Oehlmann, 1807.01320]

## Construction of elliptically fibered Calabi-Yau manifold

#### i. Elliptic curve E

Examples of constructions via toric techniques:

 $E_{F_i}$  as a hypersurface in the two-dimensional toric variety  $\mathbb{P}_{F_i}$  (generalized weighted projective spaces, associated with 16 reflexive polytopes  $F_i$ ):

c.f., [Klevers, Pena, Oehlmann, Piragua, Reuter '14]

$$E_{F_i} = \{p_{F_i} = 0\} \text{ in } \mathbb{P}_{F_i}$$

#### ii. Elliptically fibered Calabi-Yau space: $X_{F_i}$

Impose Calabi-Yau condition: coordinates in  $\mathbb{P}_{F_i}$  and coeffs. of  $E_{F_i}$  lifted to sections on (specific polynomial functions of) B

 $E_{F_i} \subset \mathbb{P}_{F_i} \longrightarrow X_{F_i}$ 

Fibration depends only on anti-canonical divisor  $\overline{\mathcal{K}}$  & two additional  $S_7$  and  $S_9$  divisor classes

#### iii. Chiral index for D=4 matter:

$$\chi(\mathbf{R}) = \int_{\mathcal{C}_{\mathbf{R}}} G_4$$



- a) construct  $G_4$  flux by computing  $H_V^{(2,2)}(\hat{X})$
- b) determine matter surface  $C_{\mathbf{R}}$  (via resultant techniques)

#### iv. Global consistency – D3 tadpole cancellation:

$$\frac{\chi(X)}{24} = n_{D3} + \frac{1}{2} \int_X G_4 \wedge G_4$$

- a) satisfied for integer and positive n<sub>D3</sub>
- b) constraint on integer valued flux G<sub>4</sub>

$$G_4 + \frac{1}{2}c_2(X) \in H^4(\mathbb{Z}, \hat{X})$$

#### Standard Model

[M.C., Klevers, Peña, Oehlmann, Reuter, 1503.02068]

F<sub>11</sub> polytope



Elliptic curve:

$$p_{F_{11}} = s_1 e_1^2 e_2^2 e_3 e_4^4 u^3 + s_2 e_1 e_2^2 e_3^2 e_4^2 u^2 v + s_3 e_2^2 e_3^2 u v^2 + s_5 e_1^2 e_2 e_4^3 u^2 w + s_6 e_1 e_2 e_3 e_4 u v w + s_9 e_1 v w^2$$

(hypersurface constraint in  $\mathbb{P}^2$  [u:v:w] with four blow-ups [e<sub>1</sub>:e<sub>2</sub>:e<sub>3</sub>:e<sub>4</sub>])

Global [geometric origin of U(1)]

[M.C., Lin, 1706.08521]

Gauge Symmetry: 
$$\left[\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)\right] \ / \ \mathbb{Z}_6$$

Matter:

 $[s_3]=0$   $[s_9]=0$   $[e_4]=0$  rational section

Representation

 $(\mathbf{3},\mathbf{2})_{1/6} \mid (\mathbf{\bar{3}},\mathbf{1})_{-2/3} \mid \ (\mathbf{\bar{3}},\mathbf{1})_{1/3} \mid (\mathbf{1},\mathbf{2})_{-1/2} \mid \ (\mathbf{1},\mathbf{1})_{-1} \mid$ 



Compatibility with global constraint

Construct G<sub>4</sub> for chiral index & D3-tadpole constraint

### **Standard Model:**

Hyperplane divisor class

$$H=4\overline{\mathcal{K}}$$

Base  $B = \mathbb{P}^3$  Divisors in the base:

$$S_7 = n_7 H$$

$$S_9 = n_9 H$$

 $n_7, n_9 \in \mathbb{Z}$ 

Solutions (#(families); $n_{D3}$ ) for allowed ( $n_7$ , $n_9$ ):

| $n_7 \setminus n_9$ | 1        | 2        | 3         | 4       | 5      | 6        | 7     |
|---------------------|----------|----------|-----------|---------|--------|----------|-------|
| 7                   | _        | (27; 16) | _         | _       |        |          |       |
| 6                   | _        | (12; 81) | (21;42)   | _       | _      |          |       |
| 5                   | _        | _        | (12; 57)  | (30; 8) | _      | (3; 46)  |       |
| 4                   | (42;4)   | _        | (30; 32)  | _       | _      | _        | _     |
| 3                   | _        | (21;72)  | _         | _       | _      | (15; 30) |       |
| 2                   | (45;16)  | (24;79)  | (21;66)   | (24;44) | (3;64) |          |       |
| 1                   | _        | _        | _         | _       |        |          |       |
| 0                   | _        | _        | (12; 112) |         |        |          |       |
| -1                  | (36; 91) | (33;74)  |           | <b></b> |        | <b>~</b> | J     |
| -2                  | _        |          |           | 'I'1p   | oi tr  | je rce   | berg? |

# IV. Landscape of Standard Models Toric analysis

[M.C., J. Halverson, L. Lin, M. Liu and J. Tian, arXiv:1903.0009]

### a) Take the same toric elliptic fibration as before:

hyperplane constraint in 2D reflexive polytope F<sub>11</sub>

Gauge symmetry:

$$\frac{SU(3)\times SU(2)\times U(1)}{\mathbb{Z}_6}$$
 Global Gauge Symmetry

b) Take bases B, associated with 3D reflexive polytopes.



For each reflexive polytope, different bases B are associated with different (fine-star-regular) triangulations of a chosen polytope. [Triangulations determine intersections of divisors.]

Triangulations grow exponentially with the complexity of a polytope.

# c) Specific choice of divisors: $S_{7,9} = \overline{\mathcal{K}}$

[anti-canonical divisor of the base B – fixed by the polytope]

SU (3) and SU (2) divisors  $S_9$  and  $S_3$  with class  $\overline{\mathcal{K}} \rightarrow$ 

$$g_{3,2}^2 = 2/\text{vol}(\overline{\mathcal{K}})$$

U(1) - (height-pairing) divisor class  $5\overline{\mathcal{K}}/6$   $\rightarrow$ 

(accounting for a factor of 2 mismatch w/ Cartan generators)

$$\frac{5}{3}g_Y^2 = \frac{2}{\operatorname{vol}(\overline{\mathcal{K}})}$$



$$g_3^2 = g_2^2 = 5/3g_Y^2$$

Geometrically connected to Pati-Salam SU(4) x SU(2) x SU(2) [but did not find manifest SO(10) GUT].

c.f., [M.C., Klevers, Peña, Oehlmann, Reuter, 1503.02068]

- d) Remaining conditions:
  - iii. 3-families of quarks and leptons (chiral index)
  - iv. D3-tadpole constraints
- Construct G<sub>4</sub> flux (in terms of base divisors)
- Chirality, D3 tadpole and G₄ integrality expressed in terms of intersection numbers of divisors in the base B → Geometric conditions!
- In the case  $S_{7.9} = \overline{\mathcal{K}}$  and 3-families it reduces to:

$$n_{\mathrm{D3}} = 12 + \frac{5}{8}\overline{\mathcal{K}}^3 - \frac{45}{2\overline{\mathcal{K}}^3} \in \mathbb{Z}_{\geq 0}$$

Depends only on a polytope and not on triangulation!

# Landscape count:

$$12 + \frac{5}{8}\overline{\mathcal{K}}^3 - \frac{45}{2\overline{\mathcal{K}}^3} \in \mathbb{Z}_{\geq 0}$$

- Out of 4319 3D reflective polytopes → 708 satisfy the constraint.
   (many of them with large number of lattice points)
- Triangulation of polytopes can be handled combinatorially.
   (each corresponds to a different base B)
   It can be implemented on computer, e.g., in SageMath:
  - i) for 237 polytopes w/ < 15 lattice points →414310 MSSM models
- ii) for 471 polytopes w/ ≥ 15 lattice points → exponentially growing computation time

c.f., [Halverson, Tian, 1610.08864]

 Provide bound: counting via fine-regular triangulations of each facets → estimate on regular fine-star triangulations:

$$7.667 \times 10^{13} \lesssim N_{\rm SM}^{\rm toric} \lesssim 1.622 \times 10^{16}$$

(dominated by  $\mathcal{P}_8$  polytope)

# V. Summary

String theory compactification with focus on recent

F- theory advances



Particle physics models:

first global three family Standard Models

Anticipated: tip of the iceberg



Indeed, geometric advances

Landscape of globally consistent Standard Models with the exact chiral spectrum of three-families of quarks & leptons via toric techniques > quadrillion models!

### Outlook

# Work in progress:

Number of massless Higgs doublets & vector exotics:

- technically difficult
- at generic points in moduli space number small/zero (MSSM excepted to be abundant)

work in progress, M.C., Bies, Lin, Liu

### Yukawa Couplings

Expected to have R-parity suppressed couplings as it is geometrically connected Pati-Salam model

work in progress, M.C., Lin, Liu, Zoccarato, Zhang

Outstanding issues:

D3-brane gauge dynamics,...moduli stabilization,... supersymmetry breaking,...

Further studies

Thank you!